Suppr超能文献

PO2RDF:使用资源描述框架(Resource Description Framework,RDF)为精准肿瘤学表示真实世界的数据。

PO2RDF: representation of real-world data for precision oncology using resource description framework.

机构信息

Division of Digital Health Sciences, Mayo Clinic, Rochester, MN, USA.

Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA.

出版信息

BMC Med Genomics. 2022 Jul 30;15(1):167. doi: 10.1186/s12920-022-01314-9.

Abstract

BACKGROUND

Next-generation sequencing provides comprehensive information about individuals' genetic makeup and is commonplace in precision oncology practice. Due to the heterogeneity of individual patient's disease conditions and treatment journeys, not all targeted therapies were initiated despite actionable mutations. To better understand and support the clinical decision-making process in precision oncology, there is a need to examine real-world associations between patients' genetic information and treatment choices.

METHODS

To fill the gap of insufficient use of real-world data (RWD) in electronic health records (EHRs), we generated a single Resource Description Framework (RDF) resource, called PO2RDF (precision oncology to RDF), by integrating information regarding genes, variants, diseases, and drugs from genetic reports and EHRs.

RESULTS

There are a total 2,309,014 triples contained in the PO2RDF. Among them, 32,815 triples are related to Gene, 34,695 triples are related to Variant, 8,787 triples are related to Disease, 26,154 triples are related to Drug. We performed two use case analyses to demonstrate the usability of the PO2RDF: (1) we examined real-world associations between EGFR mutations and targeted therapies to confirm existing knowledge and detect off-label use. (2) We examined differences in prognosis for lung cancer patients with/without TP53 mutations.

CONCLUSIONS

In conclusion, our work proposed to use RDF to organize and distribute clinical RWD that is otherwise inaccessible externally. Our work serves as a pilot study that will lead to new clinical applications and could ultimately stimulate progress in the field of precision oncology.

摘要

背景

下一代测序提供了个体遗传构成的综合信息,在精准肿瘤学实践中已很常见。由于个体患者疾病状况和治疗过程的异质性,尽管存在可操作的突变,但并非所有靶向治疗都已开始。为了更好地理解和支持精准肿瘤学中的临床决策过程,有必要检查患者遗传信息与治疗选择之间的真实关联。

方法

为了弥补电子健康记录(EHR)中真实世界数据(RWD)使用不足的问题,我们通过整合来自基因报告和 EHR 的有关基因、变体、疾病和药物的信息,生成了一个名为 PO2RDF(精准肿瘤学到 RDF)的单一资源描述框架(RDF)资源。

结果

PO2RDF 中共有 2309014 个三元组。其中,32815 个三元组与 Gene 有关,34695 个三元组与 Variant 有关,8787 个三元组与 Disease 有关,26154 个三元组与 Drug 有关。我们进行了两个用例分析,以演示 PO2RDF 的可用性:(1)我们检查了 EGFR 突变与靶向治疗之间的真实关联,以确认现有知识并发现标签外使用。(2)我们检查了携带/不携带 TP53 突变的肺癌患者预后的差异。

结论

总之,我们的工作提出了使用 RDF 来组织和分发否则无法从外部访问的临床 RWD。我们的工作是一项试点研究,将导致新的临床应用,并最终推动精准肿瘤学领域的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验