Suppr超能文献

基于机器学习的 STAT3 抗癌药物靶点虚拟筛选。

Machine Learning-based Virtual Screening for STAT3 Anticancer Drug Target.

机构信息

Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.

National Institute of Health and Medical Sciences (INSERM), 13009 Marseille, France.

出版信息

Curr Pharm Des. 2022;28(36):3023-3032. doi: 10.2174/1381612828666220728120523.

Abstract

BACKGROUND

Signal transducers and activators of the transcription (STAT) family is composed of seven structurally similar and highly conserved members, including STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. The STAT3 signaling cascade is activated by upstream kinase signals and undergoes phosphorylation, homo-dimerization, nuclear translocation, and DNA binding, resulting in the expression of target genes involved in tumor cell proliferation, metastasis, angiogenesis, and immune editing. STAT3 hyperactivation has been documented in a number of tumors, including head and neck, breast, lung, liver, kidney, prostate, pancreas cancer, multiple myeloma, and acute myeloid leukemia. Drug discovery is a timeconsuming and costly process; it may take ten to fifteen years to bring a single drug to the market. Machine learning algorithms are very fast and effective and commonly used in the field, such as drug discovery. These algorithms are ideal for the virtual screening of large compound libraries to classify molecules as active or inactive.

OBJECTIVE

The present work aims to perform machine learning-based virtual screening for the STAT3 drug target.

METHODS

Machine learning models, such as k-nearest neighbor, support vector machine, Gaussian naïve Bayes, and random forest for classifying the active and inactive inhibitors against a STAT3 drug target, were developed. Ten-fold cross-validation was used for model validation. Then the test dataset prepared from the zinc database was screened using the random forest model. A total of 20 compounds with 88% accuracy was predicted as active against STAT3. Furthermore, these twenty compounds were docked into the active site of STAT3. The two complexes with good docking scores as well as the reference compound were subjected to MD simulation. A total of 100ns MD simulation was performed.

RESULTS

Compared to all other models, the random forest model revealed better results. Compared to the standard reference compound, the top two hits revealed greater stability and compactness.

CONCLUSION

In conclusion, our predicted hits have the ability to inhibit STAT3 overexpression to combat STAT3-associated diseases.

摘要

背景

信号转导子和转录激活子(STAT)家族由七个结构相似且高度保守的成员组成,包括 STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b 和 STAT6。STAT3 信号级联由上游激酶信号激活,并经历磷酸化、同源二聚化、核易位和 DNA 结合,导致参与肿瘤细胞增殖、转移、血管生成和免疫编辑的靶基因表达。STAT3 的过度激活已在多种肿瘤中得到证实,包括头颈部、乳腺、肺、肝、肾、前列腺、胰腺癌症、多发性骨髓瘤和急性髓系白血病。药物发现是一个耗时且昂贵的过程;将一种药物推向市场可能需要十到十五年的时间。机器学习算法非常快速有效,常用于药物发现等领域。这些算法非常适合对大型化合物库进行虚拟筛选,以将分子分类为活性或非活性。

目的

本研究旨在对 STAT3 药物靶点进行基于机器学习的虚拟筛选。

方法

建立了用于分类 STAT3 药物靶点的活性和非活性抑制剂的机器学习模型,如 k-最近邻、支持向量机、高斯朴素贝叶斯和随机森林。使用十折交叉验证进行模型验证。然后使用随机森林模型筛选锌数据库中准备的测试数据集。总共预测了 20 种化合物,对 STAT3 的活性为 88%。此外,还将这 20 种化合物对接至 STAT3 的活性部位。将具有良好对接分数的两个复合物以及参考化合物进行 MD 模拟。总共进行了 100ns 的 MD 模拟。

结果

与所有其他模型相比,随机森林模型显示出更好的结果。与标准参考化合物相比,前两个命中化合物表现出更大的稳定性和紧凑性。

结论

总之,我们预测的命中化合物具有抑制 STAT3 过表达的能力,可用于治疗 STAT3 相关疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验