Suppr超能文献

靶向纳米颗粒的多物理场药代动力学模型

Multiphysics pharmacokinetic model for targeted nanoparticles.

作者信息

Glass Emma M, Kulkarni Sahil, Eng Christina, Feng Shurui, Malaviya Avishi, Radhakrishnan Ravi

机构信息

Department of Computational Applied Mathematics and Statistics, College of William and Mary, Williamsburg, VA, United States.

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.

出版信息

Front Med Technol. 2022 Jul 15;4:934015. doi: 10.3389/fmedt.2022.934015. eCollection 2022.

Abstract

Nanoparticles (NP) are being increasingly explored as vehicles for targeted drug delivery because they can overcome free therapeutic limitations by drug encapsulation, thereby increasing solubility and transport across cell membranes. However, a translational gap exists from animal to human studies resulting in only several NP having FDA approval. Because of this, researchers have begun to turn toward physiologically based pharmacokinetic (PBPK) models to guide NP experimentation. However, typical PBPK models use an empirically derived framework that cannot be universally applied to varying NP constructs and experimental settings. The purpose of this study was to develop a physics-based multiscale PBPK compartmental model for determining continuous NP biodistribution. We successfully developed two versions of a physics-based compartmental model, models A and B, and validated the models with experimental data. The more physiologically relevant model (model B) had an output that more closely resembled experimental data as determined by normalized root mean squared deviation (NRMSD) analysis. A branched model was developed to enable the model to account for varying NP sizes. With the help of the branched model, we were able to show that branching in vasculature causes enhanced uptake of NP in the organ tissue. The models were solved using two of the most popular computational platforms, MATLAB and Julia. Our experimentation with the two suggests the highly optimized ODE solver package DifferentialEquations.jl in Julia outperforms MATLAB when solving a stiff system of ordinary differential equations (ODEs). We experimented with solving our PBPK model with a neural network using Julia's Flux.jl package. We were able to demonstrate that a neural network can learn to solve a system of ODEs when the system can be made non-stiff quasi-steady-state approximation (QSSA). Our model incorporates modules that account for varying NP surface chemistries, multiscale vascular hydrodynamic effects, and effects of the immune system to create a more comprehensive and modular model for predicting NP biodistribution in a variety of NP constructs.

摘要

纳米颗粒(NP)作为靶向给药载体正受到越来越多的探索,因为它们可以通过药物封装克服游离治疗药物的局限性,从而提高溶解度并促进跨细胞膜运输。然而,从动物研究到人体研究存在转化差距,导致只有少数纳米颗粒获得了美国食品药品监督管理局(FDA)的批准。因此,研究人员开始转向基于生理的药代动力学(PBPK)模型来指导纳米颗粒实验。然而,典型的PBPK模型使用的是经验推导框架,不能普遍应用于不同的纳米颗粒结构和实验设置。本研究的目的是开发一种基于物理的多尺度PBPK房室模型,用于确定纳米颗粒的连续生物分布。我们成功开发了基于物理的房室模型的两个版本,模型A和模型B,并用实验数据对模型进行了验证。通过归一化均方根偏差(NRMSD)分析确定,更符合生理相关性的模型(模型B)的输出与实验数据更相似。开发了一个分支模型,使该模型能够考虑不同的纳米颗粒大小。借助分支模型,我们能够证明血管分支会导致器官组织中纳米颗粒的摄取增加。使用两个最流行的计算平台MATLAB和Julia对模型进行求解。我们对这两个平台的实验表明,在求解刚性常微分方程(ODE)系统时,Julia中高度优化的ODE求解器包DifferentialEquations.jl优于MATLAB。我们使用Julia的Flux.jl包,尝试用神经网络求解我们的PBPK模型。我们能够证明,当系统可以进行非刚性准稳态近似(QSSA)时,神经网络可以学习求解ODE系统。我们的模型纳入了考虑不同纳米颗粒表面化学性质、多尺度血管流体动力学效应和免疫系统效应的模块,以创建一个更全面、模块化的模型,用于预测各种纳米颗粒结构中纳米颗粒的生物分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/219a/9335923/decc0ab6a7bc/fmedt-04-934015-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验