文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种人工智能辅助的基于生理学的药代动力学模型,用于预测纳米颗粒在小鼠体内向肿瘤的传递。

An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.

机构信息

Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA.

Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506, USA.

出版信息

J Control Release. 2023 Sep;361:53-63. doi: 10.1016/j.jconrel.2023.07.040. Epub 2023 Jul 31.


DOI:10.1016/j.jconrel.2023.07.040
PMID:37499908
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11008607/
Abstract

The critical barrier for clinical translation of cancer nanomedicine stems from the inefficient delivery of nanoparticles (NPs) to target solid tumors. Rapid growth of computational power, new machine learning and artificial intelligence (AI) approaches provide new tools to address this challenge. In this study, we established an AI-assisted physiologically based pharmacokinetic (PBPK) model by integrating an AI-based quantitative structure-activity relationship (QSAR) model with a PBPK model to simulate tumor-targeted delivery efficiency (DE) and biodistribution of various NPs. The AI-based QSAR model was developed using machine learning and deep neural network algorithms that were trained with datasets from a published "Nano-Tumor Database" to predict critical input parameters of the PBPK model. The PBPK model with optimized NP cellular uptake kinetic parameters was used to predict the maximum delivery efficiency (DEmax) and DE at 24 (DE24) and 168 h (DE168) of different NPs in the tumor after intravenous injection and achieved a determination coefficient of R = 0.83 [root mean squared error (RMSE) = 3.01] for DE24, R = 0.56 (RMSE = 2.27) for DE168, and R = 0.82 (RMSE = 3.51) for DEmax. The AI-PBPK model predictions correlated well with available experimentally-measured pharmacokinetic profiles of different NPs in tumors after intravenous injection (R ≥ 0.70 for 133 out of 288 datasets). This AI-based PBPK model provides an efficient screening tool to rapidly predict delivery efficiency of a NP based on its physicochemical properties without relying on an animal training dataset.

摘要

癌症纳米医学临床转化的关键障碍源于纳米颗粒(NPs)向实体瘤的递送效率低下。计算能力的快速发展、新的机器学习和人工智能(AI)方法为解决这一挑战提供了新的工具。在这项研究中,我们通过将基于 AI 的定量构效关系(QSAR)模型与基于生理的药代动力学(PBPK)模型相结合,建立了一个 AI 辅助的 PBPK 模型,以模拟各种 NPs 的肿瘤靶向递送效率(DE)和生物分布。基于 AI 的 QSAR 模型是使用机器学习和深度神经网络算法开发的,这些算法是使用来自已发表的“纳米肿瘤数据库”的数据集进行训练的,以预测 PBPK 模型的关键输入参数。优化了 NP 细胞摄取动力学参数的 PBPK 模型用于预测不同 NPs 在静脉注射后肿瘤中的最大递送效率(DEmax)和 24 小时(DE24)和 168 小时(DE168)的 DE,并达到了 0.83 的决定系数(R)[均方根误差(RMSE)= 3.01],DE24 为 0.56(RMSE = 2.27),DE168 为 0.82(RMSE = 3.51)。AI-PBPK 模型的预测与静脉注射后不同 NPs 的可用实验测量的药代动力学谱相关性良好(对于 288 个数据集中的 133 个,R ≥ 0.70)。这种基于 AI 的 PBPK 模型提供了一种有效的筛选工具,可以根据 NPs 的物理化学性质快速预测其递送效率,而无需依赖动物训练数据集。

相似文献

[1]
An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.

J Control Release. 2023-9

[2]
Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.

Int J Nanomedicine. 2022

[3]
Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models.

J Control Release. 2024-10

[4]
Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling.

Toxicol Sci. 2023-1-31

[5]
Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats.

Part Fibre Toxicol. 2022-7-8

[6]
Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review.

Arch Toxicol. 2023-4

[7]
Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine.

Adv Healthc Mater. 2020-9

[8]
A physiologically based pharmacokinetic model to predict pegylated liposomal doxorubicin disposition in rats and human.

Drug Deliv Transl Res. 2022-9

[9]
Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach.

ACS Nano. 2020-3-24

[10]
Interpretable XGBoost-SHAP Model Predicts Nanoparticles Delivery Efficiency Based on Tumor Genomic Mutations and Nanoparticle Properties.

ACS Appl Bio Mater. 2023-10-16

引用本文的文献

[1]
Synergistic Ferroptosis-Immunotherapy Nanoplatforms: Multidimensional Engineering for Tumor Microenvironment Remodeling and Therapeutic Optimization.

Nanomicro Lett. 2025-9-2

[2]
Challenging Traditional ADME Assumptions for Physiologically Based Pharmacokinetic Models for Intravenous Administration of Iron-Carbohydrate Nanomedicines: Potential Utility of Gold Nanoparticle Models as a Roadmap.

Clin Pharmacokinet. 2025-8-15

[3]
Machine Learning and Artificial Intelligence in Nanomedicine.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[4]
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications.

Molecules. 2025-7-29

[5]
Nanomedicines for the treatment of genitourinary neoplasms.

Mater Today Bio. 2025-8-3

[6]
Bridging technology and medicine: artificial intelligence in targeted anticancer drug delivery.

RSC Adv. 2025-8-4

[7]
Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development.

MedComm (2020). 2025-7-30

[8]
Advances in multimodal imaging techniques in nanomedicine: enhancing drug delivery precision.

RSC Adv. 2025-7-30

[9]
Precision nanomaterials in colorectal cancer: advancing photodynamic and photothermal therapy.

RSC Adv. 2025-7-25

[10]
Nanoparticle technologies in precision oncology and personalized vaccine development: Challenges and advances.

Int J Pharm X. 2025-7-5

本文引用的文献

[1]
Pharmacokinetics and tumor delivery of nanoparticles.

J Drug Deliv Sci Technol. 2023-5

[2]
Conventional machine learning and deep learning in Alzheimer's disease diagnosis using neuroimaging: A review.

Front Comput Neurosci. 2023-2-6

[3]
Core, Coating, or Corona? The Importance of Considering Protein Coronas in nano-QSPR Modeling of Zeta Potential.

ACS Nano. 2023-2-14

[4]
Machine learning models to accelerate the design of polymeric long-acting injectables.

Nat Commun. 2023-1-10

[5]
Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling.

ACS Nano. 2022-12-27

[6]
Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling.

Toxicol Sci. 2023-1-31

[7]
A proposed mathematical description of in vivo nanoparticle delivery.

Adv Drug Deliv Rev. 2022-10

[8]
Machine Learning and Artificial Intelligence in Toxicological Sciences.

Toxicol Sci. 2022-8-25

[9]
Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats.

Part Fibre Toxicol. 2022-7-8

[10]
Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy.

J Control Release. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索