Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA.
Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506, USA.
J Control Release. 2023 Sep;361:53-63. doi: 10.1016/j.jconrel.2023.07.040. Epub 2023 Jul 31.
The critical barrier for clinical translation of cancer nanomedicine stems from the inefficient delivery of nanoparticles (NPs) to target solid tumors. Rapid growth of computational power, new machine learning and artificial intelligence (AI) approaches provide new tools to address this challenge. In this study, we established an AI-assisted physiologically based pharmacokinetic (PBPK) model by integrating an AI-based quantitative structure-activity relationship (QSAR) model with a PBPK model to simulate tumor-targeted delivery efficiency (DE) and biodistribution of various NPs. The AI-based QSAR model was developed using machine learning and deep neural network algorithms that were trained with datasets from a published "Nano-Tumor Database" to predict critical input parameters of the PBPK model. The PBPK model with optimized NP cellular uptake kinetic parameters was used to predict the maximum delivery efficiency (DEmax) and DE at 24 (DE24) and 168 h (DE168) of different NPs in the tumor after intravenous injection and achieved a determination coefficient of R = 0.83 [root mean squared error (RMSE) = 3.01] for DE24, R = 0.56 (RMSE = 2.27) for DE168, and R = 0.82 (RMSE = 3.51) for DEmax. The AI-PBPK model predictions correlated well with available experimentally-measured pharmacokinetic profiles of different NPs in tumors after intravenous injection (R ≥ 0.70 for 133 out of 288 datasets). This AI-based PBPK model provides an efficient screening tool to rapidly predict delivery efficiency of a NP based on its physicochemical properties without relying on an animal training dataset.
癌症纳米医学临床转化的关键障碍源于纳米颗粒(NPs)向实体瘤的递送效率低下。计算能力的快速发展、新的机器学习和人工智能(AI)方法为解决这一挑战提供了新的工具。在这项研究中,我们通过将基于 AI 的定量构效关系(QSAR)模型与基于生理的药代动力学(PBPK)模型相结合,建立了一个 AI 辅助的 PBPK 模型,以模拟各种 NPs 的肿瘤靶向递送效率(DE)和生物分布。基于 AI 的 QSAR 模型是使用机器学习和深度神经网络算法开发的,这些算法是使用来自已发表的“纳米肿瘤数据库”的数据集进行训练的,以预测 PBPK 模型的关键输入参数。优化了 NP 细胞摄取动力学参数的 PBPK 模型用于预测不同 NPs 在静脉注射后肿瘤中的最大递送效率(DEmax)和 24 小时(DE24)和 168 小时(DE168)的 DE,并达到了 0.83 的决定系数(R)[均方根误差(RMSE)= 3.01],DE24 为 0.56(RMSE = 2.27),DE168 为 0.82(RMSE = 3.51)。AI-PBPK 模型的预测与静脉注射后不同 NPs 的可用实验测量的药代动力学谱相关性良好(对于 288 个数据集中的 133 个,R ≥ 0.70)。这种基于 AI 的 PBPK 模型提供了一种有效的筛选工具,可以根据 NPs 的物理化学性质快速预测其递送效率,而无需依赖动物训练数据集。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025
Mater Today Bio. 2025-8-3
MedComm (2020). 2025-7-30
J Drug Deliv Sci Technol. 2023-5
Front Comput Neurosci. 2023-2-6
Adv Drug Deliv Rev. 2022-10
Toxicol Sci. 2022-8-25