Li Guanna, Meeprasert Jittima, Wang Jijie, Li Can, Pidko Evgeny A
Biobased Chemistry and Technology Wageningen University & Research Bornse Weilanden 9 6708WG Wageningen The Netherlands.
Laboratory of Organic Chemistry Wageningen University & Research Stippeneng 4 6708WE Wageningen The Netherlands.
ChemCatChem. 2022 Mar 8;14(5):e202101646. doi: 10.1002/cctc.202101646. Epub 2022 Jan 27.
Supported metal catalysts have shown to be efficient for CO conversion due to their multifunctionality and high stability. Herein, we have combined density functional theory calculations with microkinetic modeling to investigate the catalytic reaction mechanisms of CO hydrogenation to CHOH over a recently reported catalyst of Cd/TiO. Calculations reveal that the metal-oxide interface is the active center for CO hydrogenation and methanol formation via the formate pathway dominates over the reverse water-gas shift (RWGS) pathway. Microkinetic modeling demonstrated that formate species on the surface of Cd/TiO is the relevant intermediate for the production of CHOH, and CHO formation is the rate-determining step. These findings demonstrate the crucial role of the Cd-TiO interface for controlling the CO reduction reactivity and CHOH selectivity.
负载型金属催化剂因其多功能性和高稳定性,已被证明对CO转化具有高效性。在此,我们将密度泛函理论计算与微观动力学建模相结合,以研究在最近报道的Cd/TiO催化剂上CO加氢生成CHOH的催化反应机理。计算结果表明,金属-氧化物界面是CO加氢的活性中心,通过甲酸盐途径生成甲醇的过程比逆水煤气变换(RWGS)途径占主导。微观动力学建模表明,Cd/TiO表面的甲酸盐物种是生成CHOH的相关中间体,而生成CHO是速率决定步骤。这些发现证明了Cd-TiO界面在控制CO还原反应活性和CHOH选择性方面的关键作用。