Suppr超能文献

使用机器学习对心源性休克进行早期预测

Early Prediction of Cardiogenic Shock Using Machine Learning.

作者信息

Chang Yale, Antonescu Corneliu, Ravindranath Shreyas, Dong Junzi, Lu Mingyu, Vicario Francesco, Wondrely Lisa, Thompson Pam, Swearingen Dennis, Acharya Deepak

机构信息

Philips Research North America, Cambridge, MA, United States.

Division of Cardiovascular Disease, Banner Health, Tucson, AZ, United States.

出版信息

Front Cardiovasc Med. 2022 Jul 13;9:862424. doi: 10.3389/fcvm.2022.862424. eCollection 2022.

Abstract

Cardiogenic shock (CS) is a severe condition with in-hospital mortality of up to 50%. Patients who develop CS may have previous cardiac history, but that may not always be the case, adding to the challenges in optimally identifying and managing these patients. Patients may present to a medical facility with CS or develop CS while in the emergency department (ED), in a general inpatient ward (WARD) or in the critical care unit (CC). While different clinical pathways for management exist once CS is recognized, there are challenges in identifying the patients in a timely manner, in all settings, in a timeframe that will allow proper management. We therefore developed and evaluated retrospectively a machine learning model based on the XGBoost (XGB) algorithm which runs automatically on patient data from the electronic health record (EHR). The algorithm was trained on 8 years of de-identified data (from 2010 to 2017) collected from a large regional healthcare system. The input variables include demographics, vital signs, laboratory values, some orders, and specific pre-existing diagnoses. The model was designed to make predictions 2 h prior to the need of first CS intervention (inotrope, vasopressor, or mechanical circulatory support). The algorithm achieves an overall area under curve (AUC) of 0.87 (0.81 in CC, 0.84 in ED, 0.97 in WARD), which is considered useful for clinical use. The algorithm can be refined based on specific elements defining patient subpopulations, for example presence of acute myocardial infarction (AMI) or congestive heart failure (CHF), further increasing its precision when a patient has these conditions. The top-contributing risk factors learned by the model are consistent with existing clinical findings. Our conclusion is that a useful machine learning model can be used to predict the development of CS. This manuscript describes the main steps of the development process and our results.

摘要

心源性休克(CS)是一种严重疾病,院内死亡率高达50%。发生CS的患者可能有既往心脏病史,但情况并非总是如此,这增加了优化识别和管理这些患者的挑战。患者可能因CS就诊于医疗机构,或在急诊科(ED)、普通住院病房(WARD)或重症监护病房(CC)时发生CS。虽然一旦识别出CS就存在不同的临床管理路径,但在所有环境中及时识别患者并在允许适当管理的时间范围内存在挑战。因此,我们开发并回顾性评估了一种基于XGBoost(XGB)算法的机器学习模型,该模型可根据电子健康记录(EHR)中的患者数据自动运行。该算法使用从一个大型区域医疗系统收集的8年去识别数据(2010年至2017年)进行训练。输入变量包括人口统计学、生命体征、实验室值、一些医嘱和特定的既往诊断。该模型旨在在首次进行CS干预(使用血管活性药物、血管加压药或机械循环支持)前2小时做出预测。该算法的曲线下总面积(AUC)为0.87(CC中为0.81,ED中为0.84,WARD中为0.97),被认为对临床应用有用。该算法可根据定义患者亚群的特定因素进行优化,例如急性心肌梗死(AMI)或充血性心力衰竭(CHF)的存在,当患者有这些情况时可进一步提高其精度。该模型识别出的主要危险因素与现有临床发现一致。我们的结论是,一个有用的机器学习模型可用于预测CS的发生。本手稿描述了开发过程的主要步骤和我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ec0/9326048/d7e01302d3dc/fcvm-09-862424-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验