Suppr超能文献

疟疾可视化分析工具:用于对巴西公共疟疾数据进行可视化探索性分析的工具。

Malaria-VisAnalytics: a tool for visual exploratory analysis of Brazilian public malaria data.

机构信息

AtyImoLab - Institute of Computing, Federal University of Bahia (UFBA), Salvador, Brazil.

Institute of Collective Health, Federal University of Bahia (UFBA), Salvador, Brazil.

出版信息

Malar J. 2022 Aug 1;21(1):232. doi: 10.1186/s12936-022-04248-w.

Abstract

BACKGROUND

Data integration and visualisation techniques have been widely used in scientific research to allow the exploitation of large volumes of data and support highly complex or long-lasting research questions. Integration allows data from different sources to be aggregated into a single database comprising variables of interest for different types of studies. Visualisation allows large and complex data sets to be manipulated and interpreted in a more intuitive way.

METHODS

Integration and visualisation techniques were applied in a malaria surveillance ecosystem to build an integrated database comprising notifications, deaths, vector control and climate data. This database is accessed through Malaria-VisAnalytics, a visual mining platform for descriptive and predictive analysis supporting decision and policy-making by governmental and health agents.

RESULTS

Experimental and validation results have proved that the visual exploration and interaction mechanisms allow effective surveillance for rapid action in suspected outbreaks, as well as support a set of different research questions over integrated malaria electronic health records.

CONCLUSION

The integrated database and the visual mining platform (Malaria-VisAnalytics) allow different types of users to explore malaria-related data in a user-friendly interface. Summary data and key insights can be obtained through different techniques and dimensions. The case study on Manaus can serve as a reference for future replication in other municipalities. Finally, both the database and the visual mining platform can be extended with new data sources and functionalities to accommodate more complex scenarios (such as real-time data capture and analysis).

摘要

背景

数据集成和可视化技术已广泛应用于科学研究中,以利用大量数据并支持高度复杂或耗时长久的研究问题。集成可将来自不同来源的数据聚合到一个包含不同类型研究感兴趣变量的单个数据库中。可视化可更直观地操作和解释大型和复杂数据集。

方法

集成和可视化技术应用于疟疾监测生态系统中,构建了一个包含通知、死亡、病媒控制和气候数据的综合数据库。该数据库通过 Malaria-VisAnalytics 访问,这是一个用于描述性和预测性分析的可视化挖掘平台,为政府和卫生机构的决策和政策制定提供支持。

结果

实验和验证结果证明,可视化探索和交互机制允许对疑似暴发进行快速行动的有效监测,并支持对综合疟疾电子健康记录进行一系列不同的研究问题。

结论

综合数据库和可视化挖掘平台(Malaria-VisAnalytics)允许不同类型的用户在用户友好的界面中探索与疟疾相关的数据。通过不同的技术和维度可以获得汇总数据和关键见解。马瑙斯的案例研究可以作为未来在其他城市复制的参考。最后,数据库和可视化挖掘平台都可以通过新的数据源和功能进行扩展,以适应更复杂的场景(例如实时数据捕获和分析)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346f/9344676/663e299fe28a/12936_2022_4248_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验