Suppr超能文献

用于动物运动数据的循环-线性连接函数

Circular-linear copulae for animal movement data.

作者信息

Hodel Florian H, Fieberg John R

机构信息

Department of Fisheries and Wildlife Michigan State University East Lansing MI USA.

Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul MN USA.

出版信息

Methods Ecol Evol. 2022 May;13(5):1001-1013. doi: 10.1111/2041-210X.13821. Epub 2022 Mar 1.

Abstract

Animal movement is often modelled in discrete time, formulated in terms of taken between successive locations at regular time intervals. Steps are characterized by the distance between successive locations () and changes in direction (). Animals commonly exhibit a mix of directed movements with large step lengths and turn angles near 0 when travelling between habitat patches and more wandering movements with small step lengths and uniform turn angles when foraging. Thus, step lengths and turn angles will typically be cross-correlated.Most models of animal movement assume that step lengths and turn angles are independent, likely due to a lack of available alternatives. Here, we show how the method of copulae can be used to fit multivariate distributions that allow for correlated step lengths and turn angles.We describe several newly developed copulae appropriate for modelling animal movement data and fit these distributions to data collected on fishers (). The copulae are able to capture the inherent correlation in the data and provide a better fit than a model that assumes independence. Further, we demonstrate via simulation that this correlation can impact movement patterns (e.g. rates of dispersion overtime).We see many opportunities to extend this framework (e.g. to consider autocorrelation in step attributes) and to integrate it into existing frameworks for modelling animal movement and habitat selection. For example, copulae could be used to more accurately sample available locations when conducting habitat-selection analyses.

摘要

动物运动通常在离散时间中建模,根据在固定时间间隔内连续位置之间的步长来表述。步长的特征在于连续位置之间的距离()和方向变化()。动物在栖息地斑块之间移动时,通常表现出大步长和接近0的转向角的定向运动与觅食时小步长和均匀转向角的更多徘徊运动的混合。因此,步长和转向角通常会相互关联。大多数动物运动模型假设步长和转向角是独立的,这可能是由于缺乏可用的替代方法。在这里,我们展示了如何使用copula方法来拟合多变量分布,该分布允许步长和转向角相关。我们描述了几种新开发的适用于对动物运动数据进行建模的copula,并将这些分布拟合到渔貂()收集的数据上。这些copula能够捕捉数据中的内在相关性,并且比假设独立性的模型拟合得更好。此外,我们通过模拟证明这种相关性会影响运动模式(例如随时间的扩散速率)。我们看到有很多机会扩展这个框架(例如考虑步长属性中的自相关性),并将其整合到现有的动物运动和栖息地选择建模框架中。例如,在进行栖息地选择分析时,copula可用于更准确地采样可用位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f7/9314651/397e2ba4cf33/MEE3-13-1001-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验