Signer Johannes, Fieberg John, Avgar Tal
Wildlife Sciences University of Goettingen Göttingen Germany.
Department of Fisheries, Wildlife and Conservation Biology University of Minnesota St. Paul Minnesota.
Ecol Evol. 2019 Feb 5;9(2):880-890. doi: 10.1002/ece3.4823. eCollection 2019 Jan.
Advances in tracking technology have led to an exponential increase in animal location data, greatly enhancing our ability to address interesting questions in movement ecology, but also presenting new challenges related to data management and analysis. Step-selection functions (SSFs) are commonly used to link environmental covariates to animal location data collected at fine temporal resolution. SSFs are estimated by comparing observed steps connecting successive animal locations to random steps, using a likelihood equivalent of a Cox proportional hazards model. By using common statistical distributions to model step length and turn angle distributions, and including habitat- and movement-related covariates (functions of distances between points, angular deviations), it is possible to make inference regarding habitat selection and movement processes or to control one process while investigating the other. The fitted model can also be used to estimate utilization distributions and mechanistic home ranges. Here, we present the R package amt (animal movement tools) that allows users to fit SSFs to data and to simulate space use of animals from fitted models. The amt package also provides tools for managing telemetry data. Using fisher () data as a case study, we illustrate a four-step approach to the analysis of animal movement data, consisting of data management, exploratory data analysis, fitting of models, and simulating from fitted models.
追踪技术的进步使得动物位置数据呈指数级增长,极大地增强了我们解决运动生态学中有趣问题的能力,但同时也带来了与数据管理和分析相关的新挑战。步长选择函数(SSF)通常用于将环境协变量与以精细时间分辨率收集的动物位置数据相联系。通过使用似然等价于Cox比例风险模型,比较连接连续动物位置的观测步长与随机步长来估计SSF。通过使用常见的统计分布对步长和转向角分布进行建模,并纳入与栖息地和运动相关的协变量(点之间距离的函数、角度偏差),就有可能对栖息地选择和运动过程进行推断,或者在研究另一个过程时控制一个过程。拟合模型还可用于估计利用分布和机制性活动范围。在此,我们展示了R包amt(动物运动工具),它允许用户将SSF拟合到数据,并从拟合模型中模拟动物的空间利用情况。amt包还提供了管理遥测数据的工具。以渔貂(fisher)数据为例,我们阐述了一种分析动物运动数据的四步方法,包括数据管理、探索性数据分析、模型拟合以及从拟合模型中进行模拟。