Suppr超能文献

探索机器学习在提高生物制药开发和生产效率方面的潜力。

Exploring the potential of machine learning for more efficient development and production of biopharmaceuticals.

机构信息

Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India.

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.

出版信息

Biotechnol Prog. 2022 Nov;38(6):e3291. doi: 10.1002/btpr.3291. Epub 2022 Aug 11.

Abstract

Principles of Industry 4.0 direct us to predict how pharmaceutical operations and regulations may exist with automation, digitization, artificial intelligence (AI), and real time data acquisition. Machine learning (ML), a sub-discipline of AI, involves the use of statistical tools to extract the desired information either through understanding the underlying patterns in the information or by development of mathematical relationships among the critical process parameters (CPPs) and critical quality attributes (CQAs) of biopharmaceuticals. ML is still in its infancy for directly supporting the quality-by-design based development and manufacturing of biopharmaceuticals. However, adoption of ML-based models in place of conventional multi-variate-data-analysis (MVDA) is increasing with the accumulation of large-scale data. This has been majorly contributed by the real-time monitoring of process variables and quality attributes of products through the implementation of process analytical technology in biopharmaceutical manufacturing. All aspects of healthcare, from drug design to product distribution, are complex and multidimensional. Thus, ML-based approaches are being applied to achieve sophistication, accuracy, flexibility and agility in all these areas. This review discusses the potential of ML for addressing the complex issues in diverse areas of biopharmaceutical development, such as biopharmaceuticals design and assessment of early stage development, upstream and downstream process development, analysis, characterization and prediction of post-translational modifications (PTMs), formulation, and stability studies. Moreover, the challenges in acquisition, cleaning and structuring the bioprocess data, which is one of the major hurdles in implementation of ML in biopharma industry, have also been discussed. Regulatory perspectives on implementation of AI/ML in the biopharma sector have also been briefly discussed. This article is a bird's eye view on the recent developments and applications of ML in overcoming the challenges for adopting "Industry - 4.0" in the biopharma industry.

摘要

工业 4.0 原则指导我们预测制药操作和法规如何随着自动化、数字化、人工智能 (AI) 和实时数据采集而存在。机器学习 (ML) 是 AI 的一个分支,涉及使用统计工具通过理解信息中的潜在模式或通过在生物制药的关键工艺参数 (CPP) 和关键质量属性 (CQA) 之间建立数学关系来提取所需信息。ML 仍然处于起步阶段,无法直接支持基于质量源于设计的生物制药开发和制造。然而,随着大数据的积累,基于 ML 的模型在替代传统的多变量数据分析 (MVDA) 的应用正在增加。这主要是通过在生物制药制造中实施过程分析技术来实时监测工艺变量和产品质量属性实现的。从药物设计到产品分配,医疗保健的各个方面都很复杂。因此,基于 ML 的方法正被应用于在所有这些领域实现复杂性、准确性、灵活性和敏捷性。本文讨论了 ML 在解决生物制药开发的各个领域的复杂问题方面的潜力,例如生物制药设计和早期开发阶段的评估、上下游工艺开发、分析、表征和预测翻译后修饰 (PTMs)、制剂和稳定性研究。此外,还讨论了在生物制药行业中实施 ML 所面临的主要障碍之一,即生物过程数据的获取、清理和结构化方面的挑战。本文还简要讨论了监管部门对在生物制药领域实施 AI/ML 的看法。本文概述了 ML 在克服采用“工业 4.0”在生物制药行业所面临的挑战方面的最新发展和应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验