Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Department of Urology, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Kunshan, China.
Cancer Med. 2023 Feb;12(3):2560-2571. doi: 10.1002/cam4.5100. Epub 2022 Aug 3.
To develop and externally validate a novel nomogram in biopsy-naïve patients with prostate-specific antigen (PSA) <10 ng/ml and PI-RADS v2.1 = 3 lesions.
We retrospectively collected 307 men that underwent initial biopsy from October 2015 to January 2022 in Cohort 1 (The First Affiliated Hospital of Soochow University). External cohort (Cohort 2, Kunshan Hospital) included 109 men that met our criteria from July 2016 to June 2021. By Slicer-3D Software, the volume of all lesions was divided into two subgroups (PI-RADS v2.1 = 3a and 3b). Logistic regression analysis was performed to screen for variables and construct nomogram by analyzing clinical data from Cohort 1. Receiver operating characteristics curve analysis, calibration plot and decision curve analysis (DCA) were plotted to validate the nomogram in external cohort.
A total of 70 (22.8%) patients was diagnosed with prostate cancer in Institution 1. Among them, 34 (11.1%) had clinically significant prostate cancer (csPCa). Age, prostate-specific antigen density, digital rectal examination, PI-RADS v2.1 = 3 subgroups (3a and 3b) and apparent diffusion coefficient (ADC, <750 mm /s) were predictive factors for prostate cancer (PCa) and csPCa. High area under the curve of the nomogram was found in Cohort 1 and Cohort 2 for PCa (0.857 vs. 0.850) and for csPCa (0.896 vs. 0.893). Calibration curves showed excellent agreement between the predicted probability and actual risk for the models in internal and external validation. The DCA demonstrated net benefit of our nomogram.
Until now, this is the first nomogram that predicts PCa and csPCa in biopsy-naïve patients with PSA <10 ng/ml and PI-RADS v2.1 = 3 lesions. Furthermore, PI-RADS v2.1 = 3 subgroups were considered to be an independent risk factor in our model. Our nomogram may assist urologists in biopsy decision making for these so-called "double gray zone" patients.
为 PSA<10ng/ml 且 PI-RADS v2.1=3 类病变的前列腺穿刺活检初筛患者开发并验证一种新的列线图。
我们回顾性收集了 2015 年 10 月至 2022 年 1 月在队列 1(苏州大学附属第一医院)接受初始活检的 307 名男性患者的资料。外部队列(队列 2,昆山市第一人民医院)纳入了 2016 年 7 月至 2021 年 6 月符合我们标准的 109 名男性患者。通过 Slicer-3D 软件,将所有病变的体积分为两组(PI-RADS v2.1=3a 和 3b)。通过分析队列 1 的临床数据,进行逻辑回归分析以筛选变量并构建列线图。绘制受试者工作特征曲线分析、校准图和决策曲线分析(DCA)以验证外部队列中的列线图。
在机构 1 中,共有 70 名(22.8%)患者被诊断为前列腺癌。其中,34 名(11.1%)患有临床显著前列腺癌(csPCa)。年龄、前列腺特异性抗原密度、直肠指检、PI-RADS v2.1=3 亚组(3a 和 3b)和表观扩散系数(ADC,<750mm/s)是前列腺癌(PCa)和 csPCa 的预测因素。在队列 1 和队列 2 中,列线图对 PCa(0.857 对 0.850)和 csPCa(0.896 对 0.893)的曲线下面积均较高。内部和外部验证的校准曲线均显示模型的预测概率与实际风险之间具有良好的一致性。DCA 表明我们的列线图具有净收益。
到目前为止,这是第一个在 PSA<10ng/ml 且 PI-RADS v2.1=3 类病变的前列腺穿刺活检初筛患者中预测 PCa 和 csPCa 的列线图。此外,PI-RADS v2.1=3 亚组在我们的模型中被认为是一个独立的危险因素。我们的列线图可能有助于泌尿科医生在这些所谓的“双灰色区域”患者中进行活检决策。