Suppr超能文献

开发和验证一种新的列线图,以避免在 PI-RADS 类别≥4 病变且 PSA≤20ng/ml 的患者中进行不必要的活检。

Development and validation of a novel nomogram to avoid unnecessary biopsy in patients with PI-RADS category ≥ 4 lesions and PSA ≤ 20 ng/ml.

机构信息

Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

World J Urol. 2024 Aug 23;42(1):495. doi: 10.1007/s00345-024-05202-y.

Abstract

OBJECTIVES

To develop and validate a prediction model for identifying non-prostate cancer (non-PCa) in biopsy-naive patients with PI-RADS category ≥ 4 lesions and PSA ≤ 20 ng/ml to avoid unnecessary biopsy.

PATIENTS AND METHODS

Eligible patients who underwent transperineal biopsies at West China Hospital between 2018 and 2022 were included. The patients were randomly divided into training cohort (70%) and validation cohort (30%). Logistic regression was used to screen for independent predictors of non-PCa, and a nomogram was constructed based on the regression coefficients. The discrimination and calibration were assessed by the C-index and calibration plots, respectively. Decision curve analysis (DCA) and clinical impact curves (CIC) were applied to measure the clinical net benefit.

RESULTS

A total of 1580 patients were included, with 634 non-PCa. Age, prostate volume, prostate-specific antigen density (PSAD), apparent diffusion coefficient (ADC) and lesion zone were independent predictors incorporated into the optimal prediction model, and a corresponding nomogram was constructed ( https://nomogramscu.shinyapps.io/PI-RADS-4-5/ ). The model achieved a C-index of 0.931 (95% CI, 0.910-0.953) in the validation cohort. The DCA and CIC demonstrated an increased net benefit over a wide range of threshold probabilities. At biopsy-free thresholds of 60%, 70%, and 80%, the nomogram was able to avoid 74.0%, 65.8%, and 55.6% of unnecessary biopsies against 9.0%, 5.0%, and 3.6% of missed PCa (or 35.9%, 30.2% and 25.1% of foregone biopsies, respectively).

CONCLUSION

The developed nomogram has favorable predictive capability and clinical utility can help identify non-PCa to support clinical decision-making and reduce unnecessary prostate biopsies.

摘要

目的

开发和验证一种预测模型,用于识别前列腺特异性抗原(PSA)≤20ng/ml 且 PI-RADS 分类≥4 级的活检初筛阴性患者中的非前列腺癌(非 PCa),以避免不必要的活检。

方法

纳入 2018 年至 2022 年在华西医院接受经会阴前列腺活检的患者。将患者随机分为训练队列(70%)和验证队列(30%)。使用逻辑回归筛选非 PCa 的独立预测因子,并根据回归系数构建列线图。通过 C 指数和校准图评估判别和校准。决策曲线分析(DCA)和临床影响曲线(CIC)用于衡量临床净获益。

结果

共纳入 1580 例患者,其中 634 例为非 PCa。年龄、前列腺体积、前列腺特异抗原密度(PSAD)、表观扩散系数(ADC)和病变区是纳入最佳预测模型的独立预测因子,并构建了相应的列线图(https://nomogramscu.shinyapps.io/PI-RADS-4-5/)。模型在验证队列中获得 0.931(95%CI,0.910-0.953)的 C 指数。DCA 和 CIC 表明,在广泛的阈值概率范围内,净获益增加。在无活检阈值为 60%、70%和 80%时,列线图可避免 74.0%、65.8%和 55.6%的不必要活检,而漏诊 PCa 率为 9.0%、5.0%和 3.6%(或分别为 35.9%、30.2%和 25.1%的错失活检)。

结论

所开发的列线图具有良好的预测能力和临床实用性,有助于识别非 PCa,为临床决策提供支持,并减少不必要的前列腺活检。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验