Suppr超能文献

基于 T7 RNA 聚合酶分裂的新型光遗传学工具在哺乳动物细胞中的应用。

Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase.

机构信息

Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.

出版信息

ACS Synth Biol. 2022 Aug 19;11(8):2650-2661. doi: 10.1021/acssynbio.2c00067. Epub 2022 Aug 3.

Abstract

Optogenetic tools are widely used to control gene expression dynamics both in prokaryotic and eukaryotic cells. These tools are used in a variety of biological applications from stem cell differentiation to metabolic engineering. Despite some tools already available in bacteria, no light-inducible system currently exists to control gene expression independently from mammalian transcriptional and/or translational machineries thus working orthogonally to endogenous regulatory mechanisms. Such a tool would be particularly important in synthetic biology, where orthogonality is advantageous to achieve robust activation of synthetic networks. Here we implement, characterize, and optimize a new optogenetic tool in mammalian cells based on a previously published system in bacteria called Opto-T7RNAPs. The tool is orthogonal to the cellular machinery for transcription and consists of a split T7 RNA polymerase coupled with the blue light-inducible magnets system (mammalian OptoT7-mOptoT7). In our study we exploited the T7 polymerase's viral origins to tune our system's expression level, reaching up to an almost 20-fold change activation over the dark control. mOptoT7 is used here to generate mRNA for protein expression, shRNA for protein inhibition, and Pepper aptamer for RNA visualization. Moreover, we show that mOptoT7 can mitigate the gene expression burden when compared to another optogenetic construct. These properties make mOptoT7 a powerful new tool to use when orthogonality and viral RNA species (that lack endogenous RNA modifications) are desired.

摘要

光遗传学工具被广泛用于控制原核和真核细胞中的基因表达动力学。这些工具在从干细胞分化到代谢工程等各种生物学应用中都有使用。尽管已经有一些工具可用于细菌,但目前还没有光诱导系统可以独立于哺乳动物转录和/或翻译机制来控制基因表达,从而与内源性调控机制正交。在合成生物学中,这种工具尤其重要,因为正交性有利于实现合成网络的稳健激活。在这里,我们基于先前在细菌中发表的称为 Opto-T7RNAPs 的系统,在哺乳动物细胞中实现、表征和优化了一种新的光遗传学工具。该工具与转录的细胞机制正交,由与蓝光诱导的磁体系统(哺乳动物 OptoT7-mOptoT7)偶联的分裂 T7 RNA 聚合酶组成。在我们的研究中,我们利用 T7 聚合酶的病毒起源来调整我们系统的表达水平,与黑暗对照相比,激活水平达到近 20 倍的变化。mOptoT7 用于表达蛋白的 mRNA、用于蛋白抑制的 shRNA 和用于 RNA 可视化的 Pepper 适体。此外,我们还证明 mOptoT7 可以减轻基因表达负担,与另一种光遗传学构建体相比。这些特性使 mOptoT7 成为需要正交性和病毒 RNA 种类(缺乏内源性 RNA 修饰)时的强大新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0510/9396705/b958774abff7/sb2c00067_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验