QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
University of Queensland, Brisbane, QLD, Australia.
Malar J. 2022 Aug 3;21(1):233. doi: 10.1186/s12936-022-04245-z.
Rapid diagnostic tests (RDTs) that rely on the detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) have become key tools for diagnosing P. falciparum infection. The utility of RDTs can be limited by PfHRP2 persistence, however it can be a potential benefit in low transmission settings where detection of persistent PfHRP2 using newer ultra-sensitive PfHRP2 based RDTs can serve as a surveillance tool to identify recent exposure. Better understanding of the dynamics of PfHRP2 over the course of a malaria infection can inform optimal use of RDTs.
A previously published mathematical model was refined to mimic the production and decay of PfHRP2 during a malaria infection. Data from 15 individuals from volunteer infection studies were used to update the original model and estimate key model parameters. The refined model was applied to a cohort of patients from Namibia who received treatment for clinical malaria infection for whom longitudinal PfHRP2 concentrations were measured.
The refinement of the PfHRP2 dynamic model indicated that in malaria naïve hosts, P. falciparum parasites of the 3D7 strain produce 33.6 × 10 g (95% CI 25.0-42.1 × 10 g) of PfHRP2 in vivo per parasite replication cycle, with an elimination half-life of 1.67 days (95% CI 1.11-3.40 days). The refined model included these updated parameters and incorporated individualized body fluid volume calculations, which improved predictive accuracy when compared to the original model. The performance of the model in predicting clearance of PfHRP2 post treatment in clinical samples from six adults with P. falciparum infection in Namibia improved when using a longer elimination half-life of 4.5 days, with 14% to 67% of observations for each individual within the predicted range.
The updated mathematical model can predict the growth and clearance of PfHRP2 during the production and decay of a mono-infection with P. falciparum, increasing the understanding of PfHRP2 antigen dynamics. This model can guide the optimal use of PfHRP2-based RDTs for reliable diagnosis of P. falciparum infection and re-infection in endemic settings, but also for malaria surveillance and elimination programmes in low transmission areas.
依赖于恶性疟原虫裂殖子表面蛋白 2(PfHRP2)检测的快速诊断检测(RDT)已成为诊断恶性疟原虫感染的重要工具。然而,RDT 的实用性可能会受到 PfHRP2 持续存在的限制,但是在低传播环境中,使用新的超灵敏 PfHRP2 基于 RDT 检测持续 PfHRP2 可以作为一种监测工具,以识别最近的暴露情况,这可能是一个潜在的好处。更好地了解疟原虫感染过程中 PfHRP2 的动态可以为 RDT 的最佳使用提供信息。
对以前发表的数学模型进行了改进,以模拟疟原虫感染过程中 PfHRP2 的产生和衰减。使用来自志愿者感染研究的 15 个人的数据更新了原始模型并估计了关键模型参数。将改进后的模型应用于纳米比亚的一组接受临床疟疾感染治疗的患者,这些患者的纵向 PfHRP2 浓度被测量。
PfHRP2 动态模型的改进表明,在疟原虫未感染的宿主中,3D7 株的恶性疟原虫寄生虫在体内每个寄生虫复制周期中产生 33.6×10-9g(95%CI 25.0-42.1×10-9g)的 PfHRP2,消除半衰期为 1.67 天(95%CI 1.11-3.40 天)。改进后的模型包含这些更新的参数,并纳入了个体化体液量计算,与原始模型相比,这提高了预测准确性。该模型在预测纳米比亚 6 名成年人感染恶性疟原虫的临床样本治疗后 PfHRP2 清除方面的性能得到了改善,当使用更长的消除半衰期 4.5 天时,每个个体的 14%到 67%的观察结果都在预测范围内。
更新后的数学模型可以预测 PfHRP2 在恶性疟原虫单一感染的产生和衰减过程中的增长和清除,从而增加对 PfHRP2 抗原动力学的理解。该模型可以指导在流行地区使用 PfHRP2 基于 RDT 的可靠诊断恶性疟原虫感染和再感染,但也可以用于疟疾监测和消除计划。