Suppr超能文献

锂离子电池爆炸气溶胶:形态与元素组成。

Lithium-ion battery explosion aerosols: Morphology and elemental composition.

作者信息

Barone Teresa L, Dubaniewicz Thomas H, Friend Sherri A, Zlochower Isaac A, Bugarski Aleksandar D, Rayyan Naseem S

机构信息

Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA.

Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA.

出版信息

Aerosol Sci Technol. 2021 Jul 7;55(10):1183-1201. doi: 10.1080/02786826.2021.1938966.

Abstract

Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.

摘要

对锂离子电池爆炸产生的气溶胶进行了表征,以评估潜在暴露风险。通过激活三种商用电池的热失控来引发爆炸:(1)锂镍锰钴氧化物(NMC),(2)磷酸铁锂(LFP),以及(3)钛酸锂氧化物(LTO)。爆炸后的气溶胶收集在阳极盘式过滤器上,并通过扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)进行分析。SEM和EDS分析表明,NMC电池的气溶胶形态和成分与原始电池材料中的单个颗粒相当,这表明爆炸过程中原始电池组件发生了断裂和喷射。相比之下,LFP电池释放出碳质空心微珠,这表明气溶胶是由熔融微球内有机物的分解形成的。LTO爆炸气溶胶显示出两种排放类型的特征。可吸入气溶胶中来自阳极、阴极和隔膜的元素含量突出表明,由于电池热失控时可能存在暴露风险,因此需要选择低毒性的电池材料。

相似文献

1
Lithium-ion battery explosion aerosols: Morphology and elemental composition.
Aerosol Sci Technol. 2021 Jul 7;55(10):1183-1201. doi: 10.1080/02786826.2021.1938966.
2
Estimation of the critical external heat leading to the failure of lithium-ion batteries.
Appl Therm Eng. 2020 Oct;179. doi: 10.1016/j.applthermaleng.2020.115665.
3
Evaluating inhalation risks and toxicological impacts of lithium-ion battery thermal runaway emissions.
Environ Int. 2025 May;199:109466. doi: 10.1016/j.envint.2025.109466. Epub 2025 Apr 19.
4
A review of improvements on electric vehicle battery.
Heliyon. 2024 Jul 25;10(15):e34806. doi: 10.1016/j.heliyon.2024.e34806. eCollection 2024 Aug 15.
6
Fire Tests on E-vehicle Battery Cells and Packs.
Traffic Inj Prev. 2015;16 Suppl 1:S159-64. doi: 10.1080/15389588.2015.1015117.
7
Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles.
Waste Manag Res. 2023 Feb;41(2):376-388. doi: 10.1177/0734242X221127175. Epub 2022 Nov 12.
8
Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries.
ACS Omega. 2022 Apr 19;7(17):14562-14570. doi: 10.1021/acsomega.1c06495. eCollection 2022 May 3.
9
Failure Analysis of Short-Circuited Lithium-Ion Battery with Nickel-Manganese-Cobalt/Graphite Electrode.
J Nanosci Nanotechnol. 2018 Sep 1;18(9):6427-6430. doi: 10.1166/jnn.2018.15691.
10
Identification of waste lithium-ion battery cell chemistry for recycling.
Waste Manag. 2025 Feb 15;194:137-148. doi: 10.1016/j.wasman.2024.12.038. Epub 2025 Jan 10.

引用本文的文献

1
Acute eosinophilic pneumonia caused by an exploding mobile battery: A case report.
Respir Med Case Rep. 2025 Mar 27;55:102196. doi: 10.1016/j.rmcr.2025.102196. eCollection 2025.

本文引用的文献

1
Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures.
J Hazard Mater. 2020 Dec 5;400:123169. doi: 10.1016/j.jhazmat.2020.123169. Epub 2020 Jun 12.
2
A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO cathode.
J Hazard Mater. 2020 Jan 5;381:120916. doi: 10.1016/j.jhazmat.2019.120916. Epub 2019 Jul 24.
3
Materials by Design: Tailored Morphology and Structures of Carbon Anodes for Enhanced Battery Safety.
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13334-13342. doi: 10.1021/acsami.9b02921. Epub 2019 Mar 27.
4
Toxic fluoride gas emissions from lithium-ion battery fires.
Sci Rep. 2017 Aug 30;7(1):10018. doi: 10.1038/s41598-017-09784-z.
5
Are Lithium Ion Cells Intrinsically Safe?
IEEE Trans Ind Appl. 2013 Nov;49(6):2451-2460. doi: 10.1109/TIA.2013.2263274.
6
Interactions between ultrafine particles and transition metals in vivo and in vitro.
Toxicol Appl Pharmacol. 2002 Nov 1;184(3):172-9. doi: 10.1006/taap.2002.9501.
8
Activation of NF-kappaB by PM(10) occurs via an iron-mediated mechanism in the absence of IkappaB degradation.
Toxicol Appl Pharmacol. 2000 Jul 15;166(2):101-10. doi: 10.1006/taap.2000.8957.
9
Free radical activity of PM10: iron-mediated generation of hydroxyl radicals.
Environ Health Perspect. 1997 Sep;105 Suppl 5(Suppl 5):1285-9. doi: 10.1289/ehp.97105s51285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验