Suppr超能文献

新型冠状病毒感染与严重程度的血浆蛋白质组学揭示了对阿尔茨海默病和冠心病通路的影响。

Plasma proteomics of SARS-CoV-2 infection and severity reveals impact on Alzheimer and coronary disease pathways.

作者信息

Wang Lihua, Western Dan, Timsina Jigyasha, Repaci Charlie, Song Won-Min, Norton Joanne, Kohlfeld Pat, Budde John, Climer Sharlee, Butt Omar H, Jacobson Daniel, Garvin Michael, Templeton Alan R, Campagna Shawn, O'Halloran Jane, Presti Rachel, Goss Charles W, Mudd Philip A, Ances Beau M, Zhang Bin, Sung Yun Ju, Cruchaga Carlos

机构信息

Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.

NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA.

出版信息

medRxiv. 2022 Jul 25:2022.07.25.22278025. doi: 10.1101/2022.07.25.22278025.

Abstract

Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal ( https://covid.proteomics.wustl.edu/ ). Using those proteins and machine learning approached we created and validated specific prediction models for ventilation (AUC>0.91), death (AUC>0.95) and either outcome (AUC>0.80). These proteins were also enriched in specific biological processes, including immune and cytokine signaling (FDR ≤ 3.72×10 ), Alzheimer's disease (FDR ≤ 5.46×10 ) and coronary artery disease (FDR ≤ 4.64×10 ). Mendelian randomization using pQTL as instrumental variants nominated BCAT2 and GOLM1 as a causal proteins for COVID-19. Causal gene network analyses identified 141 highly connected key proteins, of which 35 have known drug targets with FDA-approved compounds. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes (ventilation and death), reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.

摘要

鉴定2019冠状病毒病(COVID-19)的血浆蛋白质组变化对于理解该疾病的病理生理学、开发预测模型和新型疗法至关重要。我们对332例COVID-19患者和150例对照进行了血浆深度蛋白质组分析,并在一个独立队列(297例病例和76例对照)中进行重复研究,以寻找三种COVID-19结局(感染、通气和死亡)的潜在生物标志物和因果蛋白。我们鉴定并重复了与这三种结局中的任何一种相关的1449种蛋白质(感染相关841种、通气相关833种、死亡相关253种),这些蛋白质可在一个门户网站(https://covid.proteomics.wustl.edu/)上查询。利用这些蛋白质和机器学习方法,我们创建并验证了针对通气(AUC>0.91)、死亡(AUC>0.95)和任一结局(AUC>0.80)的特定预测模型。这些蛋白质还在特定的生物学过程中富集,包括免疫和细胞因子信号传导(FDR≤3.72×10 )、阿尔茨海默病(FDR≤5.46×10 )和冠状动脉疾病(FDR≤4.64×10 )。使用pQTL作为工具变量的孟德尔随机化将BCAT2和GOLM1指定为COVID-19的因果蛋白。因果基因网络分析确定了141个高度连接的关键蛋白,其中35个具有FDA批准化合物的已知药物靶点。我们的研究结果为两种严重的COVID-19结局(通气和死亡)提供了独特的预后生物标志物,揭示了它们与阿尔茨海默病和冠状动脉疾病的关系,并确定了COVID-19结局的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ece/9347279/e9081a8d024a/nihpp-2022.07.25.22278025v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验