Suppr超能文献

用于轻度认知障碍识别的深度时空注意力网络

A Deep Spatiotemporal Attention Network for Mild Cognitive Impairment Identification.

作者信息

Feng Quan, Huang Yongjie, Long Yun, Gao Le, Gao Xin

机构信息

State Key Laboratory of Public Big Data, GuiZhou University, Guizhou, China.

Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China.

出版信息

Front Aging Neurosci. 2022 Jul 18;14:925468. doi: 10.3389/fnagi.2022.925468. eCollection 2022.

Abstract

Mild cognitive impairment (MCI) is a nervous system disease, and its clinical status can be used as an early warning of Alzheimer's disease (AD). Subtle and slow changes in brain structure between patients with MCI and normal controls (NCs) deprive them of effective diagnostic methods. Therefore, the identification of MCI is a challenging task. The current functional brain network (FBN) analysis to predict human brain tissue structure is a new method emerging in recent years, which provides sensitive and effective medical biomarkers for the diagnosis of neurological diseases. Therefore, to address this challenge, we propose a novel Deep Spatiotemporal Attention Network (DSTAN) framework for MCI recognition based on brain functional networks. Specifically, we first extract spatiotemporal features between brain functional signals and FBNs by designing a spatiotemporal convolution strategy (ST-CONV). Then, on this basis, we introduce a learned attention mechanism to further capture brain nodes strongly correlated with MCI. Finally, we fuse spatiotemporal features for MCI recognition. The entire network is trained in an end-to-end fashion. Extensive experiments show that our proposed method significantly outperforms current baselines and state-of-the-art methods, with a classification accuracy of 84.21%.

摘要

轻度认知障碍(MCI)是一种神经系统疾病,其临床状态可作为阿尔茨海默病(AD)的早期预警。MCI患者与正常对照(NCs)之间脑结构的细微和缓慢变化使得缺乏有效的诊断方法。因此,MCI的识别是一项具有挑战性的任务。当前用于预测人类脑组织结构的功能脑网络(FBN)分析是近年来出现的一种新方法,它为神经疾病的诊断提供了敏感且有效的医学生物标志物。因此,为应对这一挑战,我们提出了一种基于脑功能网络的用于MCI识别的新型深度时空注意力网络(DSTAN)框架。具体而言,我们首先通过设计时空卷积策略(ST-CONV)来提取脑功能信号与FBN之间的时空特征。然后,在此基础上,我们引入一种学习到的注意力机制,以进一步捕捉与MCI高度相关的脑节点。最后,我们融合时空特征用于MCI识别。整个网络以端到端的方式进行训练。大量实验表明,我们提出的方法显著优于当前的基线方法和最先进的方法,分类准确率达到84.21%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d621/9339621/c34a1035a862/fnagi-14-925468-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验