Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
Schizophr Bull. 2022 Nov 18;48(6):1217-1227. doi: 10.1093/schbul/sbac096.
Multisite massive schizophrenia neuroimaging data sharing is becoming critical in understanding the pathophysiological mechanism and making an objective diagnosis of schizophrenia; it remains challenging to obtain a generalizable and interpretable, shareable, and evolvable neuroimaging biomarker for schizophrenia diagnosis.
A Morphometric Integrated Classification Index (MICI) was proposed as a potential biomarker for schizophrenia diagnosis based on structural magnetic resonance imaging data of 1270 subjects from 10 sites (588 schizophrenia patients and 682 normal controls). An optimal XGBoost classifier plus sample-weighted SHapley Additive explanation algorithms were used to construct the MICI measure.
The MICI measure achieved comparable performance with the sample-weighted ensembling model and merged model based on raw data (Delong test, P > 0.82) while outperformed the single-site models (Delong test, P < 0.05) in either the independent-sample testing datasets from the 9 sites or the independent-site dataset (generalizable). Besides, when new sites were embedded in, the performance of this measure was gradually increasing (evolvable). Finally, MICI was strongly associated with the severity of schizophrenia brain structural abnormality, with the patients' positive and negative symptoms, and with the brain expression profiles of schizophrenia risk genes (interpretable).
In summary, the proposed MICI biomarker may provide a simple and explainable way to support clinicians for objectively diagnosing schizophrenia. Finally, we developed an online model share platform to promote biomarker generalization and provide free individual prediction services (http://micc.tmu.edu.cn/mici/index.html).
多中心大样本精神分裂症神经影像学数据共享对于理解精神分裂症的病理生理机制和进行客观诊断变得至关重要;然而,获得一个可推广、可解释、可共享和可扩展的精神分裂症神经影像学生物标志物仍然具有挑战性。
基于来自 10 个研究中心的 1270 名受试者(588 名精神分裂症患者和 682 名正常对照)的结构磁共振成像数据,提出了一种形态计量综合分类指数(MICI)作为精神分裂症诊断的潜在生物标志物。使用最优的 XGBoost 分类器和样本加权 SHapley Additive 解释算法构建了 MICI 度量。
MICI 度量在独立样本测试数据集或独立站点数据集(可推广)中,与基于原始数据的样本加权集成模型和合并模型相比具有相当的性能(Delong 检验,P > 0.82),同时优于单站点模型(Delong 检验,P < 0.05)。此外,当新的站点被嵌入时,该度量的性能逐渐提高(可扩展)。最后,MICI 与精神分裂症大脑结构异常的严重程度、患者的阳性和阴性症状以及精神分裂症风险基因的大脑表达谱强烈相关(可解释)。
总之,所提出的 MICI 生物标志物可能为临床医生提供一种简单且可解释的方法来客观诊断精神分裂症。最后,我们开发了一个在线模型共享平台,以促进生物标志物的推广,并提供免费的个人预测服务(http://micc.tmu.edu.cn/mici/index.html)。