Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan.
Schizophr Bull. 2022 May 7;48(3):563-574. doi: 10.1093/schbul/sbac030.
Machine learning approaches using structural magnetic resonance imaging (MRI) can be informative for disease classification; however, their applicability to earlier clinical stages of psychosis and other disease spectra is unknown. We evaluated whether a model differentiating patients with chronic schizophrenia (ChSZ) from healthy controls (HCs) could be applied to earlier clinical stages such as first-episode psychosis (FEP), ultra-high risk for psychosis (UHR), and autism spectrum disorders (ASDs).
Total 359 T1-weighted MRI scans, including 154 individuals with schizophrenia spectrum (UHR, n = 37; FEP, n = 24; and ChSZ, n = 93), 64 with ASD, and 141 HCs, were obtained using three acquisition protocols. Of these, data regarding ChSZ (n = 75) and HC (n = 101) from two protocols were used to build a classifier (training dataset). The remainder was used to evaluate the classifier (test, independent confirmatory, and independent group datasets). Scanner and protocol effects were diminished using ComBat.
The accuracy of the classifier for the test and independent confirmatory datasets were 75% and 76%, respectively. The bilateral pallidum and inferior frontal gyrus pars triangularis strongly contributed to classifying ChSZ. Schizophrenia spectrum individuals were more likely to be classified as ChSZ compared to ASD (classification rate to ChSZ: UHR, 41%; FEP, 54%; ChSZ, 70%; ASD, 19%; HC, 21%).
We built a classifier from multiple protocol structural brain images applicable to independent samples from different clinical stages and spectra. The predictive information of the classifier could be useful for applying neuroimaging techniques to clinical differential diagnosis and predicting disease onset earlier.
使用结构磁共振成像(MRI)的机器学习方法可用于疾病分类;然而,其在精神分裂症等疾病早期阶段和其他疾病谱中的适用性尚不清楚。我们评估了一个能够区分慢性精神分裂症(ChSZ)患者和健康对照(HC)的模型,是否可以应用于更早的临床阶段,如首发精神病(FEP)、精神病超高风险(UHR)和自闭症谱系障碍(ASD)。
共获得 359 例 T1 加权 MRI 扫描,包括 154 例精神分裂症谱系个体(UHR,n=37;FEP,n=24;ChSZ,n=93)、64 例 ASD 和 141 例 HC,使用三种采集方案获得。其中,来自两个方案的 ChSZ(n=75)和 HC(n=101)的数据用于构建分类器(训练数据集)。其余数据用于评估分类器(测试、独立验证和独立组数据集)。使用 ComBat 减少扫描仪和方案的影响。
分类器在测试和独立验证数据集上的准确率分别为 75%和 76%。双侧苍白球和额下回三角区对分类 ChSZ 有很大贡献。与 ASD 相比,精神分裂症谱系个体更有可能被归类为 ChSZ(分类到 ChSZ:UHR,41%;FEP,54%;ChSZ,70%;ASD,19%;HC,21%)。
我们从多个方案的结构脑图像中构建了一个分类器,可应用于来自不同临床阶段和谱的独立样本。分类器的预测信息对于将神经影像学技术应用于临床鉴别诊断和更早预测疾病发作可能是有用的。