Suppr超能文献

机器学习算法在慢性精神分裂症结构脑影像中的应用,可更早地预测精神病和自闭症谱系障碍的临床阶段:一项多协议成像数据集研究。

Application of a Machine Learning Algorithm for Structural Brain Images in Chronic Schizophrenia to Earlier Clinical Stages of Psychosis and Autism Spectrum Disorder: A Multiprotocol Imaging Dataset Study.

机构信息

Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.

Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan.

出版信息

Schizophr Bull. 2022 May 7;48(3):563-574. doi: 10.1093/schbul/sbac030.

Abstract

BACKGROUND AND HYPOTHESIS

Machine learning approaches using structural magnetic resonance imaging (MRI) can be informative for disease classification; however, their applicability to earlier clinical stages of psychosis and other disease spectra is unknown. We evaluated whether a model differentiating patients with chronic schizophrenia (ChSZ) from healthy controls (HCs) could be applied to earlier clinical stages such as first-episode psychosis (FEP), ultra-high risk for psychosis (UHR), and autism spectrum disorders (ASDs).

STUDY DESIGN

Total 359 T1-weighted MRI scans, including 154 individuals with schizophrenia spectrum (UHR, n = 37; FEP, n = 24; and ChSZ, n = 93), 64 with ASD, and 141 HCs, were obtained using three acquisition protocols. Of these, data regarding ChSZ (n = 75) and HC (n = 101) from two protocols were used to build a classifier (training dataset). The remainder was used to evaluate the classifier (test, independent confirmatory, and independent group datasets). Scanner and protocol effects were diminished using ComBat.

STUDY RESULTS

The accuracy of the classifier for the test and independent confirmatory datasets were 75% and 76%, respectively. The bilateral pallidum and inferior frontal gyrus pars triangularis strongly contributed to classifying ChSZ. Schizophrenia spectrum individuals were more likely to be classified as ChSZ compared to ASD (classification rate to ChSZ: UHR, 41%; FEP, 54%; ChSZ, 70%; ASD, 19%; HC, 21%).

CONCLUSION

We built a classifier from multiple protocol structural brain images applicable to independent samples from different clinical stages and spectra. The predictive information of the classifier could be useful for applying neuroimaging techniques to clinical differential diagnosis and predicting disease onset earlier.

摘要

背景与假设

使用结构磁共振成像(MRI)的机器学习方法可用于疾病分类;然而,其在精神分裂症等疾病早期阶段和其他疾病谱中的适用性尚不清楚。我们评估了一个能够区分慢性精神分裂症(ChSZ)患者和健康对照(HC)的模型,是否可以应用于更早的临床阶段,如首发精神病(FEP)、精神病超高风险(UHR)和自闭症谱系障碍(ASD)。

研究设计

共获得 359 例 T1 加权 MRI 扫描,包括 154 例精神分裂症谱系个体(UHR,n=37;FEP,n=24;ChSZ,n=93)、64 例 ASD 和 141 例 HC,使用三种采集方案获得。其中,来自两个方案的 ChSZ(n=75)和 HC(n=101)的数据用于构建分类器(训练数据集)。其余数据用于评估分类器(测试、独立验证和独立组数据集)。使用 ComBat 减少扫描仪和方案的影响。

研究结果

分类器在测试和独立验证数据集上的准确率分别为 75%和 76%。双侧苍白球和额下回三角区对分类 ChSZ 有很大贡献。与 ASD 相比,精神分裂症谱系个体更有可能被归类为 ChSZ(分类到 ChSZ:UHR,41%;FEP,54%;ChSZ,70%;ASD,19%;HC,21%)。

结论

我们从多个方案的结构脑图像中构建了一个分类器,可应用于来自不同临床阶段和谱的独立样本。分类器的预测信息对于将神经影像学技术应用于临床鉴别诊断和更早预测疾病发作可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e045/9077435/5818191b4078/sbac030_fig1.jpg

相似文献

2
Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk.
Mol Psychiatry. 2024 May;29(5):1465-1477. doi: 10.1038/s41380-024-02426-7. Epub 2024 Feb 9.
3
Application of functional near infrared spectroscopy as supplementary examination for diagnosis of clinical stages of psychosis spectrum.
Psychiatry Clin Neurosci. 2017 Dec;71(12):794-806. doi: 10.1111/pcn.12551. Epub 2017 Aug 24.
5
Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach.
Psychiatry Res Neuroimaging. 2018 May 30;275:14-20. doi: 10.1016/j.pscychresns.2018.03.003. Epub 2018 Mar 6.
6
Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Apr 20;83:27-32. doi: 10.1016/j.pnpbp.2017.12.017. Epub 2017 Dec 29.

引用本文的文献

1
Age of machine learning: new trends in autism spectrum disorder prediction.
Front Microbiol. 2025 Jul 11;16:1492484. doi: 10.3389/fmicb.2025.1492484. eCollection 2025.
2
Identifying overlapping and distinctive traits of autism and schizophrenia using machine learning classification.
Cogn Neuropsychiatry. 2025 Mar;30(2):69-91. doi: 10.1080/13546805.2025.2464728. Epub 2025 Feb 19.
3
Biomarker discovery using machine learning in the psychosis spectrum.
Biomark Neuropsychiatry. 2024 Dec;11. doi: 10.1016/j.bionps.2024.100107. Epub 2024 Aug 26.
4
Early diagnostic value of home video-based machine learning in autism spectrum disorder: a meta-analysis.
Eur J Pediatr. 2024 Nov 21;184(1):37. doi: 10.1007/s00431-024-05837-4.
5
Schizophrenia diagnosis based on diverse epoch size resting-state EEG using machine learning.
PeerJ Comput Sci. 2024 Aug 20;10:e2170. doi: 10.7717/peerj-cs.2170. eCollection 2024.
6
The status of MRI databases across the world focused on psychiatric and neurological disorders.
Psychiatry Clin Neurosci. 2024 Oct;78(10):563-579. doi: 10.1111/pcn.13717. Epub 2024 Aug 20.
7
Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives.
Neurosci Bull. 2024 Sep;40(9):1333-1352. doi: 10.1007/s12264-024-01214-1. Epub 2024 May 4.
8
Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk.
Mol Psychiatry. 2024 May;29(5):1465-1477. doi: 10.1038/s41380-024-02426-7. Epub 2024 Feb 9.

本文引用的文献

2
Comparison of traveling-subject and ComBat harmonization methods for assessing structural brain characteristics.
Hum Brain Mapp. 2021 Nov;42(16):5278-5287. doi: 10.1002/hbm.25615. Epub 2021 Aug 17.
3
Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification.
Hum Brain Mapp. 2021 Oct 1;42(14):4658-4670. doi: 10.1002/hbm.25574. Epub 2021 Jul 29.
6
Grey matter volume and structural covariance associated with schizotypy.
Schizophr Res. 2020 Oct;224:88-94. doi: 10.1016/j.schres.2020.09.021. Epub 2020 Oct 9.
7
Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders.
JAMA Psychiatry. 2021 Jan 1;78(1):47-63. doi: 10.1001/jamapsychiatry.2020.2694.
10
Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA.
Neuroimage. 2020 Sep;218:116956. doi: 10.1016/j.neuroimage.2020.116956. Epub 2020 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验