Suppr超能文献

有机神经电子学:从神经接口到神经假体

Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics.

作者信息

Go Gyeong-Tak, Lee Yeongjun, Seo Dae-Gyo, Lee Tae-Woo

机构信息

Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.

出版信息

Adv Mater. 2022 Nov;34(45):e2201864. doi: 10.1002/adma.202201864. Epub 2022 Oct 10.

Abstract

Requirements and recent advances in research on organic neuroelectronics are outlined herein. Neuroelectronics such as neural interfaces and neuroprosthetics provide a promising approach to diagnose and treat neurological diseases. However, the current neural interfaces are rigid and not biocompatible, so they induce an immune response and deterioration of neural signal transmission. Organic materials are promising candidates for neural interfaces, due to their mechanical softness, excellent electrochemical properties, and biocompatibility. Also, organic nervetronics, which mimics functional properties of the biological nerve system, is being developed to overcome the limitations of the complex and energy-consuming conventional neuroprosthetics that limit long-term implantation and daily-life usage. Examples of organic materials for neural interfaces and neural signal recordings are reviewed, recent advances of organic nervetronics that use organic artificial synapses are highlighted, and then further requirements for neuroprosthetics are discussed. Finally, the future challenges that must be overcome to achieve ideal organic neuroelectronics for next-generation neuroprosthetics are discussed.

摘要

本文概述了有机神经电子学的研究要求和近期进展。神经接口和神经假体等神经电子学为诊断和治疗神经系统疾病提供了一种很有前景的方法。然而,目前的神经接口是刚性的且不具有生物相容性,因此会引发免疫反应并导致神经信号传输恶化。由于有机材料具有机械柔软性、优异的电化学性能和生物相容性,它们是神经接口的理想候选材料。此外,正在开发模仿生物神经系统功能特性的有机神经电子学,以克服复杂且耗能的传统神经假体的局限性,这些局限性限制了长期植入和日常生活使用。本文回顾了用于神经接口和神经信号记录的有机材料实例,突出了使用有机人工突触的有机神经电子学的近期进展,然后讨论了对神经假体的进一步要求。最后,讨论了为实现用于下一代神经假体的理想有机神经电子学必须克服的未来挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验