Suppr超能文献

酶介导的有机神经混合突触。

Enzyme-Mediated Organic Neurohybrid Synapses.

作者信息

Lobosco Antonio, Lubrano Claudia, Rana Daniela, Montes Viviana Rincon, Musall Simon, Offenhäusser Andreas, Santoro Francesca

机构信息

Institute of Biological Information Processing IBI-3, Forschungszentrum Juelich, 52428, Jülich, Germany.

Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH, 52074, Aachen, Germany.

出版信息

Adv Mater. 2024 Dec;36(49):e2409614. doi: 10.1002/adma.202409614. Epub 2024 Oct 14.

Abstract

The development of organic artificial synapses that exhibit biomimicry features also may enable a more seamless integration of neuroelectronic devices in the nervous system, allowing artificial neuromodulation to be perceived as natural behavior by neuronal cells. Nevertheless, the capability to interact with both electroactive and non-electroactive neurotransmitters remains a challenge since state-of-the-art devices mainly rely on the oxidation of electroactive species. Here, the study proposes an organic artificial synapse engineered to enable interaction with non-electroactive species present in the central nervous system. By integrating a conductive polymeric film functionalized with platinum nanoparticles, the device can catalyze the oxidation of electroactive molecules (i.e., HO) resulting from neurotransmitter-specific enzymatic reactions following an enzymatic functionalization, therefore exhibiting neuromorphic functions driven by non-electroactive neurotransmitters. The creation of devices that can interact with or monitor these neurotransmitters can be seen as a significant step toward innovative technologies to expand the understanding of the mechanisms underlying neurological disorders and the development of novel, more effective treatments for them.

摘要

具有仿生特征的有机人工突触的发展,也可能使神经电子设备在神经系统中实现更无缝的集成,从而让人工神经调节被神经元细胞视为自然行为。然而,由于现有最先进的设备主要依赖电活性物质的氧化,与电活性和非电活性神经递质相互作用的能力仍然是一个挑战。在此,该研究提出了一种经过工程设计的有机人工突触,以实现与中枢神经系统中存在的非电活性物质的相互作用。通过整合用铂纳米颗粒功能化的导电聚合物薄膜,该设备可以催化酶功能化后神经递质特异性酶促反应产生的电活性分子(即HO)的氧化,因此展现出由非电活性神经递质驱动的神经形态功能。能够与这些神经递质相互作用或监测它们的设备的创建,可被视为朝着创新技术迈出的重要一步,这些创新技术有助于扩展对神经系统疾病潜在机制的理解,并开发出针对这些疾病的新颖、更有效的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f4b/11619221/2611475a977a/ADMA-36-2409614-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验