Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA.
Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA.
Glycobiology. 2022 Nov 22;32(12):1116-1136. doi: 10.1093/glycob/cwac050.
Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions. However, most of this sialoglycan complexity and variation remains poorly characterized by conventional techniques, which often tend to destroy or overlook crucial aspects of Sia diversity and/or fail to elucidate native structures in biological systems, i.e. in the intact sialome. To date, in situ detection and analysis of sialoglycans has largely relied on the use of plant lectins, sialidases, or antibodies, whose preferences (with certain exceptions) are limited and/or uncertain. We took advantage of naturally evolved microbial molecules (bacterial adhesins, toxin subunits, and viral hemagglutinin-esterases) that recognize sialoglycans with defined specificity to delineate 9 classes of sialoglycan recognizing probes (SGRPs: SGRP1-SGRP9) that can be used to explore mammalian sialome changes in a simple and systematic manner, using techniques common in most laboratories. SGRP candidates with specificity defined by sialoglycan microarray studies were engineered as tagged probes, each with a corresponding nonbinding mutant probe as a simple and reliable negative control. The optimized panel of SGRPs can be used in methods commonly available in most bioscience labs, such as ELISA, western blot, flow cytometry, and histochemistry. To demonstrate the utility of this approach, we provide examples of sialoglycome differences in tissues from C57BL/6 wild-type mice and human-like Cmah-/- mice.
糖蛋白和糖脂是广泛存在于脊椎动物细胞表面和分泌分子中的一类生物大分子,它们通常被末端唾液酸(Sia)所修饰。这些九碳骨架的单糖参与了许多内在的生物学过程。它们还与共生菌和病原体相互作用,同时在时间和空间上发生动态变化,通常受到环境条件的影响。然而,大多数糖蛋白和糖脂的复杂性和多样性仍然难以用传统技术来描述,这些技术往往会破坏或忽略 Sia 多样性的关键方面,或者无法阐明生物系统中天然结构,即完整的唾液酸组。迄今为止,原位检测和分析唾液酸主要依赖于植物凝集素、唾液酸酶或抗体的使用,它们的偏好(某些例外情况除外)是有限的和/或不确定的。我们利用了天然进化的微生物分子(细菌黏附素、毒素亚基和病毒血凝素-酯酶),这些分子具有特定的识别唾液酸的特异性,以描绘 9 类识别唾液酸的探针(SGRP:SGRP1-SGRP9),可以用这些探针以简单而系统的方式来探索哺乳动物唾液酸组的变化,使用大多数实验室常见的技术。通过唾液酸糖组芯片研究确定特异性的 SGRP 候选物被设计为标记探针,每个探针都有一个相应的非结合突变探针作为简单可靠的阴性对照。经过优化的 SGRP 探针组可以用于大多数生物科学实验室常见的方法,如 ELISA、western blot、流式细胞术和组织化学。为了证明这种方法的实用性,我们提供了 C57BL/6 野生型小鼠和类人 Cmah-/- 小鼠组织中唾液酸组差异的示例。