Suppr超能文献

除病变外的预测因素:与失语症严重程度相关的健康和人口统计学因素。

Predictors beyond the lesion: Health and demographic factors associated with aphasia severity.

机构信息

Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.

Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.

出版信息

Cortex. 2022 Sep;154:375-389. doi: 10.1016/j.cortex.2022.06.013. Epub 2022 Jul 8.

Abstract

BACKGROUND

Lesion-related factors are associated with severity of language impairment in persons with aphasia. The extent to which demographic and health factors predict language impairment beyond traditional cortical measures remains unknown. Identifying and understanding the contributions of factors to predictive models of severity constitutes critical knowledge for clinicians interested in charting the likely course of aphasia in their patients and designing effective treatment approaches in light of those predictions.

METHODS

Utilizing neuroimaging and language testing from our cohort of 224 individuals in the chronic stage of recovery from a left-hemisphere stroke in a cross-sectional study, we first conducted a lesion symptom mapping (LSM) analysis to identify regions associated with aphasia severity scores. After controlling for lesion volume and damage to pre-identified areas, three models were created to predict severity scores: 1) Demographic Model (N = 147); 2) Health Model (N = 106); and 3) Overall Model (N = 106). Finally, all identified factors were entered into a Final Model to predict raw severity scores.

RESULTS

Two areas were associated with aphasia severity-left posterior insula and left arcuate fasciculus. The results from the Demographic Model revealed non-linguistic cognitive ability, age at stroke, and time post-stroke as significant predictors of severity (P = .005; P = .02; P = .001, respectively), and results from the Health Model suggested the extent of leukoaraiosis is associated with severity (P = .0004). The Overall Model showed a relationship between aphasia severity and cognitive ability (P = .01), time post-stroke (P = .002), and leukoaraiosis (P = .01). In the Final Model, which aimed to predict raw severity scores, demographic, health, and lesion factors explained 55% of the variance in severity, with health and demographic factors uniquely explaining nearly half of performance variance.

CONCLUSIONS

Results from this study add to the literature suggesting patient-specific variables can shed light on individual differences in severity beyond lesion factors. Additionally, our results emphasize the importance of non-linguistic cognitive ability and brain health in aphasia recovery.

摘要

背景

病灶相关因素与失语症患者语言障碍的严重程度有关。在传统皮质测量之外,人口统计学和健康因素在多大程度上可以预测语言障碍仍不得而知。确定和理解这些因素对严重程度预测模型的贡献,对于有兴趣了解患者失语症可能进程并根据这些预测制定有效治疗方法的临床医生来说,是至关重要的知识。

方法

在一项横断面研究中,我们利用来自 224 名左侧大脑半球卒中后慢性期患者的神经影像学和语言测试数据,首先进行了病灶症状映射(LSM)分析,以确定与失语症严重程度评分相关的区域。在控制病灶体积和预先确定区域的损伤后,我们创建了三个模型来预测严重程度评分:1)人口统计学模型(N=147);2)健康模型(N=106);3)总体模型(N=106)。最后,将所有确定的因素纳入最终模型,以预测原始严重程度评分。

结果

两个区域与失语症严重程度相关——左侧后岛叶和左侧弓状束。人口统计学模型的结果显示,非语言认知能力、卒中时年龄和卒中后时间是严重程度的显著预测因素(P=0.005;P=0.02;P=0.001),健康模型的结果表明白质疏松的程度与严重程度相关(P=0.0004)。总体模型显示,失语症严重程度与认知能力(P=0.01)、卒中后时间(P=0.002)和白质疏松(P=0.01)有关。在最终模型中,旨在预测原始严重程度评分,人口统计学、健康和病灶因素解释了严重程度方差的 55%,健康和人口统计学因素单独解释了近一半的表现方差。

结论

本研究结果增加了文献资料,表明患者特定变量可以揭示病灶因素之外的严重程度的个体差异。此外,我们的结果强调了非语言认知能力和大脑健康在失语症康复中的重要性。

相似文献

1
Predictors beyond the lesion: Health and demographic factors associated with aphasia severity.
Cortex. 2022 Sep;154:375-389. doi: 10.1016/j.cortex.2022.06.013. Epub 2022 Jul 8.
2
Leukoaraiosis Is Associated With a Decline in Language Abilities in Chronic Aphasia.
Neurorehabil Neural Repair. 2019 Sep;33(9):718-729. doi: 10.1177/1545968319862561. Epub 2019 Jul 17.
3
Leukoaraiosis is independently associated with naming outcome in poststroke aphasia.
Neurology. 2018 Aug 7;91(6):e526-e532. doi: 10.1212/WNL.0000000000005945. Epub 2018 Jul 6.
6
Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.
Brain. 2016 Jan;139(Pt 1):227-41. doi: 10.1093/brain/awv323. Epub 2015 Oct 31.
7
Leukoaraiosis Is Not Associated With Recovery From Aphasia in the First Year After Stroke.
Neurobiol Lang (Camb). 2023 Oct 31;4(4):536-549. doi: 10.1162/nol_a_00115. eCollection 2023.
8
Early Subacute White Matter Hyperintensities and Recovery of Language After Stroke.
Neurorehabil Neural Repair. 2023 Apr;37(4):218-227. doi: 10.1177/15459683231168384. Epub 2023 Apr 21.
9
Structural disconnections associated with language impairments in chronic post-stroke aphasia using disconnectome maps.
Cortex. 2022 Oct;155:90-106. doi: 10.1016/j.cortex.2022.06.016. Epub 2022 Jul 19.
10
White Matter Hyperintensities Predict Response to Language Treatment in Poststroke Aphasia.
Neurorehabil Neural Repair. 2020 Oct;34(10):945-953. doi: 10.1177/1545968320952809. Epub 2020 Sep 13.

引用本文的文献

1
Advanced brain aging mediates the relationship between cardiovascular health and aphasia severity in chronic stroke.
Aging Brain. 2025 Aug 21;8:100150. doi: 10.1016/j.nbas.2025.100150. eCollection 2025.
2
Predicting language outcome after stroke using machine learning: in search of the big data benefit.
Neuroimage Clin. 2025 Aug 6;48:103858. doi: 10.1016/j.nicl.2025.103858.
3
Early subacute frontal callosal microstructure and language outcomes after stroke.
Brain Commun. 2025 Jan 21;7(1):fcae370. doi: 10.1093/braincomms/fcae370. eCollection 2025.
4
Multifactorial interplay on language recovery following left-hemispheric stroke: A retrospective study.
J Neuropsychol. 2025 Jun;19(2):256-273. doi: 10.1111/jnp.12406. Epub 2024 Dec 23.
5
What Impacts What: Clinicians' Perspectives of Causality in Aphasia Rehabilitation.
Am J Speech Lang Pathol. 2024 Nov 4;33(6):3012-3025. doi: 10.1044/2024_AJSLP-24-00174. Epub 2024 Oct 7.
6
The Aphasia Recovery Cohort, an open-source chronic stroke repository.
Sci Data. 2024 Sep 9;11(1):981. doi: 10.1038/s41597-024-03819-7.
7
Long-range white matter fibres and post-stroke verbal and non-verbal cognition.
Brain Commun. 2024 Aug 16;6(4):fcae262. doi: 10.1093/braincomms/fcae262. eCollection 2024.
8
Under pressure: the interplay of hypertension and white matter hyperintensities with cognition in chronic stroke aphasia.
Brain Commun. 2024 Jun 11;6(3):fcae200. doi: 10.1093/braincomms/fcae200. eCollection 2024.
10
Regional brain aging: premature aging of the domain general system predicts aphasia severity.
Commun Biol. 2024 Jun 11;7(1):718. doi: 10.1038/s42003-024-06211-8.

本文引用的文献

1
Prediction of Aphasia Severity in Patients with Stroke Using Diffusion Tensor Imaging.
Brain Sci. 2021 Feb 27;11(3):304. doi: 10.3390/brainsci11030304.
2
Clinical presentation of strokes confined to the insula: a systematic review of literature.
Neurol Sci. 2021 May;42(5):1697-1704. doi: 10.1007/s10072-021-05109-1. Epub 2021 Feb 11.
3
Cognitive Reserve as an Emerging Concept in Stroke Recovery.
Neurorehabil Neural Repair. 2020 Mar;34(3):187-199. doi: 10.1177/1545968320907071. Epub 2020 Feb 24.
4
Changes in Language Function and Recovery-Related Prognostic Factors in First-Ever Left Hemispheric Ischemic Stroke.
Ann Rehabil Med. 2019 Dec;43(6):625-634. doi: 10.5535/arm.2019.43.6.625. Epub 2019 Dec 31.
5
Long-range fibre damage in small vessel brain disease affects aphasia severity.
Brain. 2019 Oct 1;142(10):3190-3201. doi: 10.1093/brain/awz251.
7
Association of Lesion Location With Long-Term Recovery in Post-stroke Aphasia and Language Deficits.
Front Neurol. 2019 Jul 24;10:776. doi: 10.3389/fneur.2019.00776. eCollection 2019.
8
Leukoaraiosis Is Associated With a Decline in Language Abilities in Chronic Aphasia.
Neurorehabil Neural Repair. 2019 Sep;33(9):718-729. doi: 10.1177/1545968319862561. Epub 2019 Jul 17.
9
Progression of Aphasia Severity in the Chronic Stages of Stroke.
Am J Speech Lang Pathol. 2019 May 27;28(2):639-649. doi: 10.1044/2018_AJSLP-18-0123. Epub 2019 Apr 8.
10
Dynamics of brain connectivity after stroke.
Rev Neurosci. 2019 Jul 26;30(6):605-623. doi: 10.1515/revneuro-2018-0082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验