Suppr超能文献

倾斜各向异性磁隧道结中自旋轨道扭矩与内置场的协同作用:实现可调谐和可靠的自旋电子神经元。

Synergy of Spin-Orbit Torque and Built-In Field in Magnetic Tunnel Junctions with Tilted Magnetic Anisotropy: Toward Tunable and Reliable Spintronic Neurons.

机构信息

Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.

School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Adv Sci (Weinh). 2022 Oct;9(30):e2203006. doi: 10.1002/advs.202203006. Epub 2022 Aug 4.

Abstract

Owing to programmable nonlinear dynamics, magnetic domain wall (DW)-based devices can be configured to function as spintronic neurons, promising to execute sophisticated tasks as a human brain. Developing energy-efficient, CMOS compatible, reliable, and tunable spintronic neurons to emulate brain-inspired processes has been a key research goal for decades. Here, a new type of DW device is reported with biological neuron characteristics driven by the synergistic interaction between spin-orbit torque and built-in field (H ) in magnetic tunnel junctions, enabling time- and energy-efficient leaky-integrate-and-fire and self-reset neuromorphic implementations. A tilted magnetic anisotropic free layer is proposed and further executed to mitigate the DW retrograde motion by suppressing the Walker breakdown. Complementary experiments and micromagnetic co-simulation results show that the integrating/leaking time of the developed spintronic neuron can be tuned to 12/15 ns with an integrating power consumption of 65 µW, which is 36× and 1.84× time and energy efficient than the state-of-the-art alternatives, respectively. Moreover, the spatial distribution of H can be modulated by adjusting the width and compensation of the reference layer, facilitating tunable activation function generator exploration. Such architecture demonstrates great potential in both fundamental research and new trajectories of technology advancement for spintronic neuron hardware applications.

摘要

由于可编程的非线性动力学,基于磁畴壁 (DW) 的器件可以被配置为作为自旋电子神经元工作,有望执行复杂的任务,就像人类大脑一样。几十年来,开发具有能量效率、CMOS 兼容性、可靠性和可调谐性的自旋电子神经元,以模拟受大脑启发的过程一直是一个关键的研究目标。在这里,报道了一种新型的 DW 器件,具有由自旋轨道扭矩和内置场 (H) 在磁性隧道结中的协同作用驱动的生物神经元特性,从而能够实现高效的时间和能量的漏积分和放电以及自重置神经形态实现。提出并进一步执行了倾斜磁各向异性自由层,通过抑制 Walker 击穿来抑制 DW 逆行运动。互补实验和微磁共模拟结果表明,开发的自旋电子神经元的积分/泄漏时间可以调节为 12/15 ns,积分功耗为 65 µW,分别比现有技术提高了 36 倍和 1.84 倍的时间和能量效率。此外,通过调整参考层的宽度和补偿,可以调制 H 的空间分布,从而有利于可调谐激活函数发生器的探索。这种架构在自旋电子神经元硬件应用的基础研究和技术进步的新轨迹方面都具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7d9/9596820/b1bf54ec1b11/ADVS-9-2203006-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验