von Atzingen Gustavo Voltani, Arteaga Hubert, da Silva Amanda Rodrigues, Ortega Nathalia Fontanari, Costa Ernane Jose Xavier, Silva Ana Carolina de Sousa
Instituto Federal de São Paulo, Piracicaba, Brazil.
Escuela Ingeniería de Industrias Alimentarias, Universidad Nacional de Jaén, Jaén, Peru.
Front Nutr. 2022 Jul 19;9:901333. doi: 10.3389/fnut.2022.901333. eCollection 2022.
Sweetener type can influence sensory properties and consumer's acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. Despite the interest in artificial sweeteners, little is known about how artificial sweeteners are processed in the human brain. Here, we applied the convolutional neural network (CNN) to evaluate brain signals of 11 healthy subjects when they tasted passion fruit juice equivalently sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or aspartame (0.05477 g/100 g). Electroencephalograms were recorded for two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were disregarded, and the artifact-free data were used to feed a Deep Neural Network with tree branches that applied a Convolutions and pooling for different feature filtering and selection. The CNN received raw signal as input for multiclass classification and with supervised training was able to extract underling features and patterns from the signal with better performance than handcrafted filters like FFT. Our results indicated that CNN is an useful tool for electroencephalography (EEG) analyses and classification of perceptually similar tastes.
甜味剂类型会影响低热量产品的感官特性以及消费者的接受度和偏好。不存在理想的甜味剂,每种甜味剂都必须在最适合的情况下使用。阿斯巴甜和三氯蔗糖可以很好地替代西番莲果汁中的蔗糖。尽管人们对人工甜味剂很感兴趣,但对于人工甜味剂在人脑中的加工过程却知之甚少。在这里,我们应用卷积神经网络(CNN)来评估11名健康受试者在品尝分别用蔗糖(9.4克/100克)、三氯蔗糖(0.01593克/100克)或阿斯巴甜(0.05477克/100克)调制成同等甜度的西番莲果汁时的脑信号。在味觉皮层的两个部位(即C3和C4)记录脑电图。去除有伪迹的数据,将无伪迹的数据用于输入一个具有分支结构的深度神经网络,该网络通过卷积和池化进行不同特征的过滤和选择。CNN将原始信号作为多类分类的输入,经过监督训练,能够从信号中提取潜在特征和模式,其性能优于像快速傅里叶变换(FFT)这样的手工滤波器。我们的结果表明,CNN是用于脑电图(EEG)分析和对感知上相似味道进行分类的有用工具。