Suppr超能文献

肿瘤微环境信号重塑染色质景观,限制耗竭 T 细胞的功能潜力。

Tumor microenvironmental signals reshape chromatin landscapes to limit the functional potential of exhausted T cells.

机构信息

Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Sci Immunol. 2022 Aug 5;7(74):eabj9123. doi: 10.1126/sciimmunol.abj9123.

Abstract

Response rates to immunotherapy in solid tumors remain low due in part to the elevated prevalence of terminally exhausted T cells, a hypofunctional differentiation state induced through persistent antigen and stress signaling. However, the mechanisms promoting progression to terminal exhaustion in the tumor remain undefined. Using the low-input chromatin immunoprecipitation sequencing method CUT&RUN, we profiled the histone modification landscape of tumor-infiltrating CD8 T cells throughout differentiation. We found that terminally exhausted T cells had unexpected chromatin features that limit their transcriptional potential. Terminally exhausted T cells had a substantial fraction of active chromatin, including active enhancers enriched for bZIP/AP-1 transcription factor motifs that lacked correlated gene expression, which was restored by immunotherapeutic costimulatory signaling. Reduced transcriptional potential was also driven by an increase in histone bivalency, which we linked directly to hypoxia exposure. Enforced expression of the hypoxia-insensitive histone demethylase was sufficient to overcome hypoxia, increase function, and promote antitumor immunity. Our study reveals the specific epigenetic changes mediated by histone modifications during T cell differentiation that support exhaustion in cancer, highlighting that their altered function is driven by improper costimulatory signals and environmental factors. These data suggest that even terminally exhausted T cells may remain competent for transcription in settings of increased costimulatory signaling and reduced hypoxia.

摘要

由于终末耗竭 T 细胞的高发率,实体瘤的免疫治疗反应率仍然较低,这是一种通过持续的抗原和应激信号诱导的低功能分化状态。然而,促进肿瘤中终末耗竭进展的机制仍未确定。使用低投入的染色质免疫沉淀测序方法 CUT&RUN,我们对整个分化过程中肿瘤浸润性 CD8 T 细胞的组蛋白修饰图谱进行了分析。我们发现,终末耗竭的 T 细胞具有意想不到的染色质特征,限制了它们的转录潜力。终末耗竭的 T 细胞有相当一部分活跃的染色质,包括富含 bZIP/AP-1 转录因子基序的活跃增强子,这些基序缺乏相关的基因表达,而免疫治疗性共刺激信号可以恢复这种表达。转录潜力的降低还受到组蛋白二价性增加的驱动,我们将其直接与缺氧暴露联系起来。强制表达缺氧不敏感的组蛋白去甲基酶 足以克服缺氧、增加功能并促进抗肿瘤免疫。我们的研究揭示了 T 细胞分化过程中组蛋白修饰介导的特定表观遗传变化,这些变化支持癌症中的耗竭,突出表明其功能改变是由不当的共刺激信号和环境因素驱动的。这些数据表明,即使是终末耗竭的 T 细胞在共刺激信号增加和缺氧减少的情况下,仍可能具有转录能力。

相似文献

2
Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3.
Epigenetics Chromatin. 2016 Oct 26;9:46. doi: 10.1186/s13072-016-0086-0. eCollection 2016.
3
Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity.
Nat Immunol. 2023 Feb;24(2):267-279. doi: 10.1038/s41590-022-01379-9. Epub 2022 Dec 21.
4
Identification of Hypoxia-ALCAM Macrophage- Exhausted T Cell Axis in Tumor Microenvironment Remodeling for Immunotherapy Resistance.
Adv Sci (Weinh). 2024 Sep;11(33):e2309885. doi: 10.1002/advs.202309885. Epub 2024 Jul 2.
5
KDM6B-dependent chromatin remodeling underpins effective virus-specific CD8 T cell differentiation.
Cell Rep. 2021 Mar 16;34(11):108839. doi: 10.1016/j.celrep.2021.108839.
7
Hypoxia Supports Differentiation of Terminally Exhausted CD8 T Cells.
Front Immunol. 2021 May 7;12:660944. doi: 10.3389/fimmu.2021.660944. eCollection 2021.
8
Regulation of histone demethylase KDM6B by hypoxia-inducible factor-2α.
Acta Biochim Biophys Sin (Shanghai). 2015 Feb;47(2):106-13. doi: 10.1093/abbs/gmu122. Epub 2014 Dec 17.
9
Id2 epigenetically controls CD8 T-cell exhaustion by disrupting the assembly of the Tcf3-LSD1 complex.
Cell Mol Immunol. 2024 Mar;21(3):292-308. doi: 10.1038/s41423-023-01118-6. Epub 2024 Jan 29.

引用本文的文献

1
Polarization of Tumor Cells and Tumor-Associated Macrophages: Molecular Mechanisms and Therapeutic Targets.
MedComm (2020). 2025 Sep 1;6(9):e70372. doi: 10.1002/mco2.70372. eCollection 2025 Sep.
3
TOX, through a glass, darkly.
Front Immunol. 2025 Jul 17;16:1576468. doi: 10.3389/fimmu.2025.1576468. eCollection 2025.
4
LARP4-mediated hypertranslation drives T cell dysfunction in tumors.
Nat Immunol. 2025 Jul 22. doi: 10.1038/s41590-025-02232-5.
5
Simulating CD8 T cell exhaustion: A comprehensive approach.
iScience. 2025 Jun 12;28(7):112897. doi: 10.1016/j.isci.2025.112897. eCollection 2025 Jul 18.
6
Tumor-educated cells in tumor microenvironment: Key drivers of immunotherapy resistance.
Chin J Cancer Res. 2025 Jun 30;37(3):446-465. doi: 10.21147/j.issn.1000-9604.2025.03.12.
7
Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies.
Front Immunol. 2025 Apr 1;16:1548234. doi: 10.3389/fimmu.2025.1548234. eCollection 2025.
8
The epigenetic landscape of fate decisions in T cells.
Nat Immunol. 2025 Apr;26(4):544-556. doi: 10.1038/s41590-025-02113-x. Epub 2025 Mar 19.
9
The epigenetic hallmarks of immune cells in cancer.
Mol Cancer. 2025 Mar 5;24(1):66. doi: 10.1186/s12943-025-02255-4.
10

本文引用的文献

1
Decoding the function of bivalent chromatin in development and cancer.
Genome Res. 2021 Dec;31(12):2170-2184. doi: 10.1101/gr.275736.121. Epub 2021 Oct 19.
2
Inflammatory signals are sufficient to elicit TOX expression in mouse and human CD8+ T cells.
JCI Insight. 2021 Jul 8;6(13):150744. doi: 10.1172/jci.insight.150744.
3
The Yin and Yang of Histone Marks in Transcription.
Annu Rev Genomics Hum Genet. 2021 Aug 31;22:147-170. doi: 10.1146/annurev-genom-120220-085159. Epub 2021 Mar 29.
4
KDM6B-dependent chromatin remodeling underpins effective virus-specific CD8 T cell differentiation.
Cell Rep. 2021 Mar 16;34(11):108839. doi: 10.1016/j.celrep.2021.108839.
5
Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion.
Nat Immunol. 2021 Feb;22(2):205-215. doi: 10.1038/s41590-020-00834-9. Epub 2021 Jan 4.
6
Efficient low-cost chromatin profiling with CUT&Tag.
Nat Protoc. 2020 Oct;15(10):3264-3283. doi: 10.1038/s41596-020-0373-x. Epub 2020 Sep 10.
7
Early precursor T cells establish and propagate T cell exhaustion in chronic infection.
Nat Immunol. 2020 Oct;21(10):1256-1266. doi: 10.1038/s41590-020-0760-z. Epub 2020 Aug 24.
8
EZH2 function in immune cell development.
Biol Chem. 2020 Jul 28;401(8):933-943. doi: 10.1515/hsz-2019-0436.
9
The Bivalent Genome: Characterization, Structure, and Regulation.
Trends Genet. 2020 Feb;36(2):118-131. doi: 10.1016/j.tig.2019.11.004. Epub 2019 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验