Grand Technion Energy Program, Technion, Haifa, 32000, Israel; Schulich Faculty of Chemistry, Technion, Haifa, 320000, Israel.
Faculty of Biotechnology and Food Engineering, Technion, Haifa, 32000, Israel.
Biosens Bioelectron. 2022 Nov 1;215:114558. doi: 10.1016/j.bios.2022.114558. Epub 2022 Jul 22.
Here, we show that it is possible to harvest photocurrent directly from unprocessed plant tissues from terrestrial or aquatic environments in bio-photoelectrochemical cells (BPECs) and use the current to produce molecular H. The source of electrons is shown to originate from the Photosystem II water-oxidation reaction and utilizes exported mediating molecules, especially NADPH. The photocurrent production is dependent on the concentration of the photosynthetic complexes, as an increase in total chlorophyll and oxygen evolution rates in the leaves lead to increased photocurrent rates. The permeability of the outer leaf surface is another important factor in photocurrent harvesting. Different tissues produce photocurrent densities in the range of ∼1-10 mA/cm which is significantly higher than microorganism-based BPECs. The relatively high photocurrent and the simplicity of the plants BPEC may pave the way toward the development of future applicative photosynthetic based energy technologies.
在这里,我们展示了在生物光电化学电池(BPEC)中,直接从陆地或水生环境中的未经处理的植物组织中收获光电流,并利用电流来产生分子 H 是可行的。电子的来源被证明源自光系统 II 的水氧化反应,并利用导出的中介分子,特别是 NADPH。光电流的产生取决于光合作用复合物的浓度,因为叶片中的总叶绿素和氧气释放速率的增加会导致光电流速率的增加。外叶表面的通透性是光电流收集的另一个重要因素。不同的组织产生的光电流密度在 1-10 mA/cm 的范围内,明显高于基于微生物的 BPEC。相对较高的光电流和植物 BPEC 的简单性可能为未来基于光合作用的能源技术的发展铺平道路。