Grand Technion Energy Program, Technion, Haifa, 32000, Israel; Schulich Faculty of Chemistry, Technion, Haifa, 320000, Israel.
Faculty of Biology, Technion, Haifa, 32000, Israel; Israel Oceanographic & Limnological Research Ltd. (PBC), Haifa, 3109701, Israel.
Biosens Bioelectron. 2022 Feb 15;198:113824. doi: 10.1016/j.bios.2021.113824. Epub 2021 Nov 27.
The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Bio-photoelectrochemical cells (BPECs) utilizing unicellular photosynthetic microorganisms have been studied, however similar harvesting of electrons from more evolved intact photosynthetic organisms has not been previously reported. In this study, we describe for the first time BPECs containing intact live marine macroalgae (seaweeds) in natural seawater or saline buffer. The BPECs produce electrical currents of >50 mA/cm, from both light-dependent (photosynthesis) and light-independent processes. These values are significantly greater than the current densities that have been reported for single-cell microorganisms. The photocurrent is inhibited by the Photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating that the source of light-driven electrons is from photosynthetic water oxidation. The current is mediated to the external anode via NADPH and possibly other reduced molecules. We show that intact macroalgae cultures can be used in large-scale BPECs containing seawater, to produce bias-free photocurrents, paving the way for the future development of low-cost energy solar energy conversion technologies using BPECs.
利用单细胞光合作用微生物的生物光电化学电池(BPECs)已经得到了研究,然而,从更进化的完整光合作用生物体中类似地收集电子尚未有报道。在这项研究中,我们首次描述了含有完整活体海洋大型藻类(海藻)的 BPECs,它们在天然海水中或盐缓冲液中运行。BPECs 产生的电流>50 mA/cm,来自光依赖(光合作用)和光独立过程。这些值明显大于已报道的单细胞微生物的电流密度。光电流被光合作用系统 II 抑制剂 3-(3,4-二氯苯基)-1,1-二甲基脲抑制,表明光驱动电子的来源来自光合作用水氧化。电流通过 NADPH 和可能其他还原分子介导到外部阳极。我们表明,完整的大型藻类培养物可以在含有海水的大型 BPECs 中使用,以产生无偏电流,为未来使用 BPECs 开发低成本太阳能转换技术铺平了道路。