Suppr超能文献

利用化学发光数字微孔阵列芯片检测单个大肠杆菌细菌。

Single Escherichia coli bacteria detection using a chemiluminescence digital microwell array chip.

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.

出版信息

Biosens Bioelectron. 2022 Nov 1;215:114594. doi: 10.1016/j.bios.2022.114594. Epub 2022 Jul 31.

Abstract

Rapid and sensitive Escherichia coli (E. coli) detection is important in determining environmental contamination, food contamination, as well as bacterial infection. Conventional methods based on bacterial culture suffer from long testing time (24 h), whereas novel nucleic acid-based and immunolabelling approaches are hindered by complicated operation, the need of complex and costly equipment, and the lack of differentiation of live and dead bacteria. Herein, we propose a chemiluminescence digital microwell array chip based on the hydrolysis of 6-Chloro-4-methylumbelliferyl-β-D-glucuronide by the β-D-glucuronidase in E. coli to achieve fast single bacterial fluorescence detection. Taking the advantage of the picoliter microwells, single bacteria are digitally encapsulated in these microwells, thus the accurate quantification of E. coli can be realized by counting the number of positive microwells. We also show that the chemiluminescence digital microwell array chip is not affected by the turbidity of the test samples as well as the temperature. Most importantly, our method can differentiate live and dead bacteria through bacterial proliferation and enzyme expression, which is confirmed by detecting E. coli after pH and chlorination treatment. By comparing with the standard method of plate counting, our method has comparable performance but significantly reduces the testing time from over 24 h-2 h and 4 h for qualitative and quantitative analysis, respectively. In addition, the microfluidic chip is portable and easy to operate without external pump, which is promising as a rapid and on-site platform for single E. coli analysis in water and food monitoring, as well as infection diagnosis.

摘要

快速灵敏地检测大肠杆菌(E. coli)对于确定环境污染、食物污染以及细菌感染非常重要。基于细菌培养的传统方法存在检测时间长(24 小时)的问题,而新型基于核酸和免疫标记的方法则受到操作复杂、需要复杂昂贵的设备以及无法区分活菌和死菌的限制。在此,我们提出了一种基于大肠杆菌β-D-葡萄糖醛酸酶水解 6-氯-4-甲基伞形酮-β-D-葡萄糖醛酸的化学发光数字微孔阵列芯片,以实现快速的单个细菌荧光检测。利用皮升级微井的优势,单个细菌被数字化封装在这些微井中,从而可以通过计数阳性微井的数量来实现对大肠杆菌的精确定量。我们还表明,该化学发光数字微孔阵列芯片不受测试样品浊度和温度的影响。最重要的是,我们的方法可以通过细菌增殖和酶表达来区分活菌和死菌,这通过对经过 pH 和氯化处理后的大肠杆菌进行检测得到了证实。与平板计数的标准方法相比,我们的方法具有相当的性能,但分别将检测时间从超过 24 小时缩短到 2 小时和 4 小时,用于定性和定量分析。此外,该微流控芯片便携且易于操作,无需外部泵,有望成为水质和食品安全监测以及感染诊断中用于单个大肠杆菌分析的快速现场平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验