Suppr超能文献

微波流动细胞术检测和区分.

Microwave Flow Cytometric Detection and Differentiation of .

机构信息

Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA.

Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.

出版信息

Sensors (Basel). 2024 Apr 30;24(9):2870. doi: 10.3390/s24092870.

Abstract

Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. B and K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.

摘要

无标记测量和分析单个细菌细胞对于食品安全监测和微生物疾病诊断至关重要。我们报告了一种具有微波流量传感器的微带传感装置,其通道高度降低,可用于细菌细胞测量。使用该传感器在 500MHz 至 8GHz 的频率下测量 B 和 K-12。结果表明,细胞的微波特性与频率有关。开发了一个 LightGBM 模型,可在 1GHz 时以 0.96 的高精度对细胞类型进行分类。因此,该传感器提供了一种有前途的无标记方法,可快速检测和区分细菌细胞。然而,该方法需要通过综合测量不同类型的细胞并使用改进的机器学习技术进行更准确的细胞分类来进一步开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af5/11086155/f17febfdbe4a/sensors-24-02870-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验