Suppr超能文献

人工神经网络在仿生纳米图案表面的力-杀菌效应中的应用。

Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces.

机构信息

Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100, Rize, Turkey.

出版信息

Eur Biophys J. 2024 Nov;53(7-8):415-427. doi: 10.1007/s00249-024-01723-x. Epub 2024 Oct 7.

Abstract

This study aimed to calculate the effect of nanopatterns' peak sharpness, width, and spacing parameters on P. aeruginosa and S. aureus cell walls by artificial neural network and finite element analysis. Elastic and creep deformation models of bacteria were developed in silico. Maximum deformation, maximum stress, and maximum strain values of the cell walls were calculated. According to the results, while the spacing of the nanopatterns is constant, it was determined that when their peaks were sharpened and their width decreased, maximum deformation, maximum stress, and maximum strain affecting the cell walls of both bacteria increased. When sharpness and width of the nano-patterns are kept constant and the spacing is increased, maximum deformation, maximum stress, and maximum strain in P. aeruginosa cell walls increase, but a decrease in S. aureus was observed. This study proves that changes in the geometric structures of nanopatterned surfaces can show different effects on different bacteria.

摘要

本研究旨在通过人工神经网络和有限元分析计算纳米图案的峰锐度、宽度和间距参数对铜绿假单胞菌和金黄色葡萄球菌细胞壁的影响。在计算机中建立了细菌的弹性和蠕变变形模型。计算了细胞壁的最大变形、最大应力和最大应变值。结果表明,当纳米图案的间距保持不变时,当它们的峰变尖锐且宽度减小时,影响两种细菌细胞壁的最大变形、最大应力和最大应变量增加。当纳米图案的锐度和宽度保持不变且间距增加时,铜绿假单胞菌细胞壁的最大变形、最大应力和最大应变量增加,但金黄色葡萄球菌的则减少。本研究证明,纳米图案表面的几何结构变化可以对不同细菌表现出不同的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验