Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
J Biol Chem. 2022 Sep;298(9):102328. doi: 10.1016/j.jbc.2022.102328. Epub 2022 Aug 4.
Within the intestine, the human G protein-coupled receptor (GPCR) GPR35 is involved in oncogenic signaling, bacterial infections, and inflammatory bowel disease. GPR35 is known to be expressed as two distinct isoforms that differ only in the length of their extracellular N-termini by 31 amino acids, but detailed insights into their functional differences are lacking. Through gene expression analysis in immune and gastrointestinal cells, we show that these isoforms emerge from distinct promoter usage and alternative splicing. Additionally, we employed optical assays in living cells to thoroughly profile both GPR35 isoforms for constitutive and ligand-induced activation and signaling of 10 different heterotrimeric G proteins, ligand-induced arrestin recruitment, and receptor internalization. Our results reveal that the extended N-terminus of the long isoform limits G protein activation yet elevates receptor-β-arrestin interaction. To better understand the structural basis for this bias, we examined structural models of GPR35 and conducted experiments with mutants of both isoforms. We found that a proposed disulfide bridge between the N-terminus and extracellular loop 3, present in both isoforms, is crucial for constitutive G activation, while an additional cysteine contributed by the extended N-terminus of the long GPR35 isoform limits the extent of agonist-induced receptor-β-arrestin2 interaction. The pharmacological profiles and mechanistic insights of our study provide clues for the future design of isoform-specific GPR35 ligands that selectively modulate GPR35-transducer interactions and allow for mechanism-based therapies against, for example, inflammatory bowel disease or bacterial infections of the gastrointestinal system.
在肠道内,人类 G 蛋白偶联受体(GPCR)GPR35 参与致癌信号转导、细菌感染和炎症性肠病。已知 GPR35 表达两种不同的异构体,它们仅在细胞外 N 端的长度上相差 31 个氨基酸,但对它们功能差异的详细了解还很缺乏。通过对免疫和胃肠道细胞中的基因表达分析,我们表明这些异构体源于不同的启动子使用和选择性剪接。此外,我们还在活细胞中采用光学测定法,全面分析了两种 GPR35 异构体的组成型和配体诱导激活以及 10 种不同异三聚体 G 蛋白的信号转导、配体诱导的 arrestin 募集和受体内化。我们的研究结果表明,长异构体的延伸 N 端限制了 G 蛋白的激活,但增强了受体-β-arrestin 的相互作用。为了更好地理解这种偏向的结构基础,我们检查了 GPR35 的结构模型,并对两种异构体的突变体进行了实验。我们发现,两种异构体中都存在的 N 端和细胞外环 3 之间的一个拟议的二硫键对于组成型 G 激活至关重要,而长 GPR35 异构体延伸的 N 端贡献的另一个半胱氨酸限制了激动剂诱导的受体-β-arrestin2 相互作用的程度。我们的研究的药理学特征和机制见解为未来设计选择性调节 GPR35 转导体相互作用的异构体特异性 GPR35 配体提供了线索,这可能为针对炎症性肠病或胃肠道细菌感染等疾病的基于机制的治疗提供新的思路。