Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter (VBC), Vienna, Austria.
J Biol Chem. 2022 Sep;298(9):102343. doi: 10.1016/j.jbc.2022.102343. Epub 2022 Aug 3.
Proximity-dependent protein labeling provides a powerful in vivo strategy to characterize the interactomes of specific proteins. We previously optimized a proximity labeling protocol for Caenorhabditis elegans using the highly active biotin ligase TurboID. A significant constraint on the sensitivity of TurboID is the presence of abundant endogenously biotinylated proteins that take up bandwidth in the mass spectrometer, notably carboxylases that use biotin as a cofactor. In C. elegans, these comprise POD-2/acetyl-CoA carboxylase alpha, PCCA-1/propionyl-CoA carboxylase alpha, PYC-1/pyruvate carboxylase, and MCCC-1/methylcrotonyl-CoA carboxylase alpha. Here, we developed ways to remove these carboxylases prior to streptavidin purification and mass spectrometry by engineering their corresponding genes to add a C-terminal His tag. This allows us to deplete them from C. elegans lysates using immobilized metal affinity chromatography. To demonstrate the method's efficacy, we use it to expand the interactome map of the presynaptic active zone protein ELKS-1. We identify many known active zone proteins, including UNC-10/RIM, SYD-2/liprin-alpha, SAD-1/BRSK1, CLA-1/CLArinet, C16E9.2/Sentryn, as well as previously uncharacterized potentially synaptic proteins such as the ortholog of human angiomotin, F59C12.3 and the uncharacterized protein R148.3. Our approach provides a quick and inexpensive solution to a common contaminant problem in biotin-dependent proximity labeling. The approach may be applicable to other model organisms and will enable deeper and more complete analysis of interactors for proteins of interest.
邻近依赖性蛋白质标记为特定蛋白质的相互作用组的特征提供了一种强大的体内策略。我们之前使用高度活跃的生物素连接酶 TurboID 优化了用于秀丽隐杆线虫的邻近标记协议。TurboID 灵敏度的一个显著限制是存在大量内源性生物素化蛋白质,这些蛋白质会在质谱仪中占用带宽,特别是使用生物素作为辅助因子的羧化酶。在 C. elegans 中,这些包括 POD-2/乙酰辅酶 A 羧化酶 alpha、PCCA-1/丙酰辅酶 A 羧化酶 alpha、PYC-1/丙酮酸羧化酶和 MCCC-1/甲基丙二酰辅酶 A 羧化酶 alpha。在这里,我们通过对相应基因进行工程改造,添加 C 端组氨酸标签,开发了在链霉亲和素纯化和质谱之前去除这些羧化酶的方法。这使我们能够使用固定化金属亲和层析从 C. elegans 裂解物中耗尽它们。为了证明该方法的功效,我们将其用于扩展突触前活性区蛋白 ELKS-1 的相互作用组图谱。我们鉴定了许多已知的活性区蛋白,包括 UNC-10/RIM、SYD-2/liprin-alpha、SAD-1/BRSK1、CLA-1/CLArinet、C16E9.2/Sentryn 以及以前未表征的潜在突触蛋白,如人类血管生成素的同源物、F59C12.3 和未表征的蛋白 R148.3。我们的方法为生物素依赖性邻近标记中常见的污染物问题提供了一种快速且廉价的解决方案。该方法可能适用于其他模式生物,并将能够更深入和更完整地分析感兴趣蛋白质的相互作用物。