Suppr超能文献

结节周围肺实质特征可改善肺部不定性结节的分类。

Perinodular Parenchymal Features Improve Indeterminate Lung Nodule Classification.

机构信息

University of Vermont, Electrical and Biomedical Engineering, Burlington, VT, USA.

University of California Berkeley, Advanced Bioimaging Center Berkeley, CA, USA.

出版信息

Acad Radiol. 2023 Jun;30(6):1073-1080. doi: 10.1016/j.acra.2022.07.001. Epub 2022 Aug 3.

Abstract

BACKGROUND

Radiomics, defined as quantitative features extracted from images, provide a non-invasive means of assessing malignant versus benign pulmonary nodules. In this study, we evaluate the consistency with which perinodular radiomics extracted from low-dose computed tomography images serve to identify malignant pulmonary nodules.

MATERIALS AND METHODS

Using the National Lung Screening Trial (NLST), we selected individuals with pulmonary nodules between 4mm to 20mm in diameter. Nodules were segmented to generate four distinct datasets; 1) a Tumor dataset containing tumor-specific features, 2) a 10 mm Band dataset containing parenchymal features between the segmented nodule boundary and 10mm out from the boundary, 3) a 15mm Band dataset, and 4) a Tumor Size dataset containing the maximum nodule diameter. Models to predict malignancy were constructed using support-vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) approaches. Ten-fold cross validation with 10 repetitions per fold was used to evaluate the performance of each approach applied to each dataset.

RESULTS

With respect to the RF, the Tumor, 10mm Band, and 15mm Band datasets achieved areas under the receiver-operator curve (AUC) of 84.44%, 84.09%, and 81.57%, respectively. Significant differences in performance were observed between the Tumor and 15mm Band datasets (adj. p-value <0.001). However, when combining tumor-specific features with perinodular features, the 10mm Band + Tumor and 15mm Band + Tumor datasets (AUC 87.87% and 86.75%, respectively) performed significantly better than the Tumor Size dataset (66.76%) or the Tumor dataset. Similarly, the AUCs from the SVM and LASSO were 84.71% and 88.91%, respectively, for the 10mm Band + Tumor.

CONCLUSIONS

The combined 10mm Band + Tumor dataset improved the differentiation between benign and malignant lung nodules compared to the Tumor datasets across all methodologies. This demonstrates that parenchymal features capture novel diagnostic information beyond that present in the nodule itself. (data agreement: NLST-163).

摘要

背景

放射组学是指从图像中提取的定量特征,它提供了一种非侵入性的方法来评估肺结节的良恶性。在这项研究中,我们评估了从低剂量计算机断层扫描图像中提取的周围放射组学特征在识别恶性肺结节方面的一致性。

材料与方法

我们使用国家肺癌筛查试验(NLST),选择了直径为 4mm 至 20mm 的肺结节患者。对结节进行分割,生成四个不同的数据集:1)肿瘤数据集,包含肿瘤特异性特征;2)10mm 带数据集,包含结节边界内 10mm 处的实质特征;3)15mm 带数据集;4)肿瘤大小数据集,包含最大结节直径。使用支持向量机(SVM)、随机森林(RF)和最小绝对收缩和选择算子(LASSO)方法构建预测恶性肿瘤的模型。每个数据集应用每种方法的性能评估采用 10 折交叉验证,每个折重复 10 次。

结果

对于 RF,肿瘤、10mm 带和 15mm 带数据集的受试者工作特征曲线下面积(AUC)分别为 84.44%、84.09%和 81.57%。肿瘤和 15mm 带数据集之间的性能差异有统计学意义(adj. p 值<0.001)。然而,当将肿瘤特异性特征与周围结节特征结合时,10mm 带+肿瘤和 15mm 带+肿瘤数据集(AUC 分别为 87.87%和 86.75%)的性能明显优于肿瘤大小数据集(66.76%)或肿瘤数据集。同样,SVM 和 LASSO 的 AUC 分别为 84.71%和 88.91%,用于 10mm 带+肿瘤。

结论

与肿瘤数据集相比,联合 10mm 带+肿瘤数据集在所有方法学中均提高了良性和恶性肺结节的区分能力。这表明实质特征可以捕获结节本身之外的新的诊断信息。(数据协议:NLST-163)。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验