Suppr超能文献

基于物联网的指挥中心,用于改善地下矿山的应急响应。

Internet of Things-Based Command Center to Improve Emergency Response in Underground Mines.

作者信息

Jha Ankit, Verburg Alex, Tukkaraja Purushotham

机构信息

Department of Mining Engineering and Management, SDSM&T, Rapid City, SD, 57701, USA.

出版信息

Saf Health Work. 2022 Mar;13(1):40-50. doi: 10.1016/j.shaw.2021.10.003. Epub 2021 Oct 16.

Abstract

BACKGROUND

Underground mines have several hazards that could lead to serious consequences if they come into effect. Acquiring, evaluating, and using the real-time data from the atmospheric monitoring system and miner's positional information is crucial in deciding the best course of action.

METHODS

A graphical user interface-based software is developed that uses an AutoCAD-based mine map, real-time atmospheric monitoring system, and miners' positional information to guide on the shortest route to mine exit and other locations within the mine, including the refuge chamber. Several algorithms are implemented to enhance the visualization of the program and guide the miners through the shortest routes. The information relayed by the sensors and communicated by other personnel are collected, evaluated, and used by the program in proposing the best course of action.

RESULTS

The program was evaluated using two case studies involving rescue relating to elevated carbon monoxide levels and increased temperature simulating fire scenarios. The program proposed the shortest path from the miner's current location to the exit of the mine, nearest refuge chamber, and the phone location. The real-time sensor information relayed by all the sensors was collected in a comma-separated value file.

CONCLUSION

This program presents an important tool that aggregates information relayed by sensors to propose the best rescue strategy. The visualization capability of the program allows the operator to observe all the information on a screen and monitor the rescue in real time. This program permits the incorporation of additional sensors and algorithms to further customize the tool.

摘要

背景

地下矿井存在多种危险,一旦发生可能会导致严重后果。获取、评估和使用来自大气监测系统的实时数据以及矿工的位置信息对于确定最佳行动方案至关重要。

方法

开发了一种基于图形用户界面的软件,该软件使用基于AutoCAD的矿井地图、实时大气监测系统和矿工的位置信息,以引导矿工前往矿井出口及矿井内其他地点(包括避难硐室)的最短路线。实施了多种算法以增强程序的可视化效果,并引导矿工通过最短路线。程序收集、评估并使用传感器传递以及其他人员传达的信息,以提出最佳行动方案。

结果

使用两个案例研究对该程序进行了评估,这两个案例涉及与一氧化碳水平升高和模拟火灾场景时温度升高相关的救援情况。该程序提出了从矿工当前位置到矿井出口、最近避难硐室和电话位置的最短路径。所有传感器传递的实时传感器信息被收集到一个逗号分隔值文件中。

结论

该程序提供了一个重要工具,可汇总传感器传递的信息以提出最佳救援策略。程序的可视化功能使操作员能够在屏幕上观察所有信息并实时监控救援情况。该程序允许纳入额外的传感器和算法,以进一步定制该工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66e6/9346949/fd826f29b2a1/gr1.jpg

相似文献

1
Internet of Things-Based Command Center to Improve Emergency Response in Underground Mines.
Saf Health Work. 2022 Mar;13(1):40-50. doi: 10.1016/j.shaw.2021.10.003. Epub 2021 Oct 16.
3
Numerical and experimental investigation of carbon monoxide spread in underground mine fires.
J Fire Sci. 2018;36(5):406-418. doi: 10.1177/0734904118793891. Epub 2018 Aug 14.
4
Early fire detection for underground diesel fuel storage areas.
Process Saf Environ Prot. 2018 Oct;119:69-74. doi: 10.1016/j.psep.2018.07.022.
5
Real-Time Monitoring of Underground Miners' Status Based on Mine IoT System.
Sensors (Basel). 2024 Jan 23;24(3):739. doi: 10.3390/s24030739.
6
8
Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine.
Saf Health Work. 2020 Sep;11(3):322-334. doi: 10.1016/j.shaw.2020.06.005. Epub 2020 Jun 26.
10
Lightweight monitoring and control system for coal mine safety using REST style.
ISA Trans. 2015 Jan;54:229-39. doi: 10.1016/j.isatra.2014.07.004. Epub 2014 Aug 8.

引用本文的文献

2
AI applications in disaster governance with health approach: A scoping review.
Arch Public Health. 2025 Aug 26;83(1):218. doi: 10.1186/s13690-025-01712-2.
4
A wireless sensor network for coal mine safety powered by modified localization algorithm.
Heliyon. 2024 Dec 24;11(1):e41262. doi: 10.1016/j.heliyon.2024.e41262. eCollection 2025 Jan 15.

本文引用的文献

1
A survey of atmospheric monitoring systems in U.S. underground coal mines.
Min Eng. 2018 Feb;70(2):37-40. doi: 10.19150/me.8058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验