Suppr超能文献

使用混合建模方法预测 COVID-19 数据。

Prediction of COVID-19 Data Using Hybrid Modeling Approaches.

机构信息

School of Asian Languages, Zhejiang Yuexiu University of Foreign Language, Shaoxing, China.

School of Economics, Tianjin University of Commerce, Tianjin, China.

出版信息

Front Public Health. 2022 Jul 22;10:923978. doi: 10.3389/fpubh.2022.923978. eCollection 2022.

Abstract

A major emphasis is the dissemination of COVID-19 across the country's many regions and provinces. Using the present COVID-19 pandemic as a guide, the researchers suggest a hybrid model architecture for analyzing and optimizing COVID-19 data during the complete country. The analysis of COVID-19's exploration and death rate uses an ARIMA model with susceptible-infectious-removed and susceptible-exposed-infectious-removed (SEIR) models. The logistic model's failure to forecast the number of confirmed diagnoses and the snags of the SEIR model's too many tuning parameters are both addressed by a hybrid model method. Logistic regression (LR), Autoregressive Integrated Moving Average Model (ARIMA), support vector regression (SVR), multilayer perceptron (MLP), Recurrent Neural Networks (RNN), Gate Recurrent Unit (GRU), and long short-term memory (LSTM) are utilized for the same purpose. Root mean square error, mean absolute error, and mean absolute percentage error are used to show these models. New COVID-19 cases, the number of quarantines, mortality rates, and the deployment of public self-protection measures to reduce the epidemic are all outlined in the study's findings. Government officials can use the findings to guide future illness prevention and control choices.

摘要

研究人员主要强调了 COVID-19 在全国多个地区和省份的传播。本研究以当前的 COVID-19 大流行作为指导,提出了一种混合模型架构,用于分析和优化全国范围内的 COVID-19 数据。采用易感-感染-清除和易感-暴露-感染-清除(SEIR)模型的 ARIMA 模型分析 COVID-19 的探索和死亡率。通过混合模型方法解决了逻辑回归(LR)、自回归综合移动平均模型(ARIMA)、支持向量回归(SVR)、多层感知机(MLP)、递归神经网络(RNN)、门控递归单元(GRU)和长短时记忆(LSTM)等方法在预测确诊病例数量和 SEIR 模型参数过多方面的不足。研究结果还概述了新的 COVID-19 病例、隔离人数、死亡率以及实施公共自我保护措施以减少疫情的情况。政府官员可以利用这些研究结果来指导未来的疾病预防和控制选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f33/9354929/944d1881c04a/fpubh-10-923978-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验