Suppr超能文献

基于注意力的 3D CNN 与多尺度集成块在阿尔茨海默病分类中的应用。

An Attention-Based 3D CNN With Multi-Scale Integration Block for Alzheimer's Disease Classification.

出版信息

IEEE J Biomed Health Inform. 2022 Nov;26(11):5665-5673. doi: 10.1109/JBHI.2022.3197331. Epub 2022 Nov 10.

Abstract

Convolutional Neural Networks (CNNs) have recently been introduced to Alzheimer's Disease (AD) diagnosis. Despite their encouraging prospects, most of the existing models only process AD-related brain atrophy on a single spatial scale, and have high computational complexity. Here, we propose a novel Attention-based 3D Multi-scale CNN model (AMSNet), which can better capture and integrate multiple spatial-scale features of AD, with a concise structure. For the binary classification between 384 AD patients and 389 Cognitively Normal (CN) controls using sMRI scannings, AMSNet achieves remarkable overall performance (91.3% accuracy, 88.3% sensitivity, and 94.2% specificity) with fewer parameters and lower computational load, generally surpassing seven comparative models. Furthermore, AMSNet generalizes well in other AD-related classification tasks, such as the three-way classification (AD-MCI-CN). Our results manifest the feasibility and efficiency of the proposed multi-scale spatial feature integration and attention mechanism used in AMSNet for AD classification, and provide potential biomarkers to explore the neuropathological causes of AD.

摘要

卷积神经网络 (CNNs) 最近被引入到阿尔茨海默病 (AD) 的诊断中。尽管它们有着令人鼓舞的前景,但现有的大多数模型仅在单一空间尺度上处理与 AD 相关的脑萎缩,并且具有较高的计算复杂度。在这里,我们提出了一种新颖的基于注意力的 3D 多尺度 CNN 模型 (AMSNet),它可以更好地捕获和整合 AD 的多种空间尺度特征,并且结构简洁。使用 sMRI 扫描对 384 名 AD 患者和 389 名认知正常 (CN) 对照者进行二分类,AMSNet 实现了出色的整体性能(91.3%的准确率、88.3%的敏感度和 94.2%的特异性),同时具有更少的参数和更低的计算负载,总体上优于七个比较模型。此外,AMSNet 在其他 AD 相关分类任务中也具有良好的泛化能力,例如三分类(AD-MCI-CN)。我们的结果表明,所提出的多尺度空间特征集成和 AMSNet 中使用的注意力机制在 AD 分类中的可行性和效率,并为探索 AD 的神经病理学原因提供了潜在的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验