Suppr超能文献

密集IncepS115:一种使用MRI图像进行阿尔茨海默病预测的新型网络级融合框架。

DenseIncepS115: a novel network-level fusion framework for Alzheimer's disease prediction using MRI images.

作者信息

Rauf Fatima, Khan Muhammad Attique, Brahim Ghassen Ben, Abrar Wardah, Alasiry Areej, Marzougui Mehrez, Jeon Seob, Nam Yunyoung

机构信息

Department of Computer Science, HITEC University, Taxila, Pakistan.

Department of Artificial Intelligence (AI), College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.

出版信息

Front Oncol. 2024 Dec 3;14:1501742. doi: 10.3389/fonc.2024.1501742. eCollection 2024.

Abstract

One of the most prevalent disorders relating to neurodegenerative conditions and dementia is Alzheimer's disease (AD). In the age group 65 and older, the prevalence of Alzheimer's disease is increasing. Before symptoms showed up, the disease had grown to a severe stage and resulted in an irreversible brain disorder that is not treatable with medication or other therapies. Therefore, early prediction is essential to slow down AD progression. Computer-aided diagnosis systems can be used as a second opinion by radiologists in their clinics to predict AD using MRI scans. In this work, we proposed a novel deep learning architecture named DenseIncepS115for for AD prediction from MRI scans. The proposed architecture is based on the Inception Module with Self-Attention (InceptionSA) and the Dense Module with Self-Attention (DenseSA). Both modules are fused at the network level using a depth concatenation layer. The proposed architecture hyperparameters are initialized using Bayesian Optimization, which impacts the better learning of the selected datasets. In the testing phase, features are extracted from the depth concatenation layer, which is further optimized using the Catch Fish Optimization (CFO) algorithm and passed to shallow wide neural network classifiers for the final prediction. In addition, the proposed DenseIncepS115 architecture is interpreted through Lime and Gradcam explainable techniques. Two publicly available datasets were employed in the experimental process: Alzheimer's ADNI and Alzheimer's classes MRI. On both datasets, the proposed architecture obtained an accuracy level of 99.5% and 98.5%, respectively. Detailed ablation studies and comparisons with state-of-the-art techniques show that the proposed architecture outperforms.

摘要

与神经退行性疾病和痴呆症相关的最常见疾病之一是阿尔茨海默病(AD)。在65岁及以上的年龄组中,阿尔茨海默病的患病率正在上升。在症状出现之前,该疾病已发展到严重阶段,并导致不可逆的脑部疾病,无法通过药物或其他疗法治疗。因此,早期预测对于减缓AD的进展至关重要。计算机辅助诊断系统可作为放射科医生在其诊所中的第二意见,通过磁共振成像(MRI)扫描来预测AD。在这项工作中,我们提出了一种名为DenseIncepS115的新型深度学习架构,用于从MRI扫描中预测AD。所提出的架构基于带有自注意力机制的Inception模块(InceptionSA)和带有自注意力机制的密集模块(DenseSA)。这两个模块在网络层面使用深度拼接层进行融合。所提出架构的超参数使用贝叶斯优化进行初始化,这对所选数据集的更好学习有影响。在测试阶段,从深度拼接层提取特征,这些特征进一步使用抓鱼优化(CFO)算法进行优化,并传递给浅宽神经网络分类器进行最终预测。此外,所提出的DenseIncepS115架构通过Lime和Gradcam可解释技术进行解释。在实验过程中使用了两个公开可用的数据集:阿尔茨海默病神经影像倡议(ADNI)数据集和阿尔茨海默病类别MRI数据集。在这两个数据集上,所提出的架构分别获得了99.5%和98.5%的准确率。详细的消融研究以及与现有技术的比较表明,所提出的架构表现更优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f12f/11653358/36f869e7484d/fonc-14-1501742-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验