Wang Guoxin, Li Yuxia, Zhou Zhiyi, An Shan, Cao Xuyang, Jin Yuxin, Sun Zhengqin, Chen Guanqun, Zhang Mingkai, Li Zhixiong, Yu Feng
College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
Tangshan Central Hospital, Tangshan, Hebei, China.
Front Neurol. 2025 Aug 29;16:1626922. doi: 10.3389/fneur.2025.1626922. eCollection 2025.
Structural magnetic resonance imaging (sMRI) is an important tool for the early diagnosis of Alzheimer's disease (AD). Previous methods based on voxel, region of interests (ROIs) or patch have limitations in characterizing discriminative features in sMRI for AD as they can only focus on specific local or global features.
We propose a computer-aided AD diagnosis method based on sMRI, named PlgFormer, which considers the extraction of both local and global features. By using a combination of convolution and self-attention, we can extract context features at both local and global levels. In the decision-making layer of the model, we design a feature fusion module that adaptively selects context features through a gating mechanism. Additionally, to account for changes in image input resolution during the downsampling operation, we embed a dynamic embedding block at each stage of the network, which can adaptively adjust the weights of the inputs with different resolutions.
We evaluated the performance of our method on dichotomous AD vs. normal control (NC) and mild cognitive impairment (MCI) vs. NC, as well as trichotomous AD vs. MCI vs. NC classification tasks, using publicly available ADNI and XWNI datasets that we collected. On the ADNI dataset, the proposed method achieves classification accuracies of 0.9431 for AD vs. NC, 0.8216 for MCI vs. CN, and 0.6228 for the AD vs. MCI vs. CN task. On the XWNI dataset, the corresponding accuracies are 0.9307, 0.8600, and 0.8672, respectively. The experimental results demonstrate the high precision and robustness of our method in diagnosing people with different stages of cognitive impairment.
The findings in our experimental results underscore the clinical potential of our proposed PlgFormer as a reliable and interpretable framework for supporting early and accurate diagnosis of AD using sMRI.
结构磁共振成像(sMRI)是阿尔茨海默病(AD)早期诊断的重要工具。以往基于体素、感兴趣区域(ROIs)或图像块的方法在表征sMRI中AD的判别特征时存在局限性,因为它们只能关注特定的局部或全局特征。
我们提出了一种基于sMRI的计算机辅助AD诊断方法,名为PlgFormer,该方法考虑了局部和全局特征的提取。通过结合卷积和自注意力,我们可以在局部和全局层面提取上下文特征。在模型的决策层,我们设计了一个特征融合模块,该模块通过门控机制自适应地选择上下文特征。此外,为了考虑下采样操作期间图像输入分辨率的变化,我们在网络的每个阶段嵌入了一个动态嵌入块,该块可以自适应地调整不同分辨率输入的权重。
我们使用收集的公开可用的ADNI和XWNI数据集,在二分的AD与正常对照(NC)、轻度认知障碍(MCI)与NC以及三分的AD与MCI与NC分类任务上评估了我们方法的性能。在ADNI数据集上,所提出的方法在AD与NC分类任务中的准确率为0.9431,在MCI与CN分类任务中的准确率为0.8216,在AD与MCI与CN任务中的准确率为0.6228。在XWNI数据集上,相应的准确率分别为0.9307、0.8600和0.8672。实验结果证明了我们的方法在诊断不同认知障碍阶段患者方面的高精度和鲁棒性。
我们实验结果中的发现强调了我们提出的PlgFormer作为一个可靠且可解释的框架在支持使用sMRI进行AD早期准确诊断方面的临床潜力。