Suppr超能文献

无监督的自然行为量化,以深入了解大脑。

Unsupervised quantification of naturalistic animal behaviors for gaining insight into the brain.

机构信息

Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.

Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia.

出版信息

Curr Opin Neurobiol. 2021 Oct;70:89-100. doi: 10.1016/j.conb.2021.07.014. Epub 2021 Sep 2.

Abstract

Neural computation has evolved to optimize the behaviors that enable our survival. Although much previous work in neuroscience has focused on constrained task behaviors, recent advances in computer vision are fueling a trend toward the study of naturalistic behaviors. Automated tracking of fine-scale behaviors is generating rich datasets for animal models including rodents, fruit flies, zebrafish, and worms. However, extracting meaning from these large and complex data often requires sophisticated computational techniques. Here we review the latest methods and modeling approaches providing new insights into the brain from behavior. We focus on unsupervised methods for identifying stereotyped behaviors and for resolving details of the structure and dynamics of behavioral sequences.

摘要

神经计算已经进化到优化使我们能够生存的行为。尽管神经科学的许多先前工作都集中在受约束的任务行为上,但计算机视觉的最新进展正在推动对自然行为的研究。对细粒度行为的自动跟踪正在为包括啮齿动物、果蝇、斑马鱼和蠕虫在内的动物模型生成丰富的数据集。然而,从这些庞大而复杂的数据中提取信息通常需要复杂的计算技术。在这里,我们回顾了最新的方法和建模方法,这些方法为我们从行为中提供了对大脑的新见解。我们重点介绍了用于识别刻板行为以及解析行为序列结构和动态细节的无监督方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验