Suppr超能文献

无监督的自然行为量化,以深入了解大脑。

Unsupervised quantification of naturalistic animal behaviors for gaining insight into the brain.

机构信息

Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.

Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia.

出版信息

Curr Opin Neurobiol. 2021 Oct;70:89-100. doi: 10.1016/j.conb.2021.07.014. Epub 2021 Sep 2.

Abstract

Neural computation has evolved to optimize the behaviors that enable our survival. Although much previous work in neuroscience has focused on constrained task behaviors, recent advances in computer vision are fueling a trend toward the study of naturalistic behaviors. Automated tracking of fine-scale behaviors is generating rich datasets for animal models including rodents, fruit flies, zebrafish, and worms. However, extracting meaning from these large and complex data often requires sophisticated computational techniques. Here we review the latest methods and modeling approaches providing new insights into the brain from behavior. We focus on unsupervised methods for identifying stereotyped behaviors and for resolving details of the structure and dynamics of behavioral sequences.

摘要

神经计算已经进化到优化使我们能够生存的行为。尽管神经科学的许多先前工作都集中在受约束的任务行为上,但计算机视觉的最新进展正在推动对自然行为的研究。对细粒度行为的自动跟踪正在为包括啮齿动物、果蝇、斑马鱼和蠕虫在内的动物模型生成丰富的数据集。然而,从这些庞大而复杂的数据中提取信息通常需要复杂的计算技术。在这里,我们回顾了最新的方法和建模方法,这些方法为我们从行为中提供了对大脑的新见解。我们重点介绍了用于识别刻板行为以及解析行为序列结构和动态细节的无监督方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验