Suppr超能文献

使用更高阶全变分和局部低秩正则化进行运动校正的 4D-MRI 重建。

Motion-aligned 4D-MRI reconstruction using higher degree total variation and locally low-rank regularization.

机构信息

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China.

First Hospital of Harbin, Harbin, China.

出版信息

Magn Reson Imaging. 2022 Nov;93:97-107. doi: 10.1016/j.mri.2022.08.002. Epub 2022 Aug 6.

Abstract

Four-dimensional magnetic resonance imaging (4D-MRI) is becoming increasingly important in radiotherapy treatment planning for its ability to simultaneously provide 3D structural information and temporal profiles of the examined tissues in a non-ionizing manner. However, the relatively long acquisition time and the resulting motion artifacts severely limit the further application of 4D-MRI. In this paper, we propose a novel motion-aligned reconstruction method based on higher degree total variation and locally low-rank regularization (maHDTV-LLR) to recover 4D MR images from the highly undersampled Fourier coefficients. Specifically, we propose a two-stage reconstruction framework alternating between a motion alignment step and a regularized optimization reconstruction step. Moreover, we incorporate the 3D-HDTV and the locally low-rank penalties into a unified framework to simultaneously exploit the spatial and temporal correlation of the 4D-MRI data. A fast alternating minimization algorithm based on variable splitting is utilized to solve the optimization problem efficiently. The performance of the proposed method is demonstrated in the context of 4D cardiac and abdominal MR images reconstruction with high undersampling factors. Numerical results show that the proposed method enables accelerated 4D-MRI with improved image quality and reduced artifacts.

摘要

四维磁共振成像(4D-MRI)因其能够非电离方式同时提供三维结构信息和被检查组织的时变信息,在放射治疗计划中变得越来越重要。然而,较长的采集时间和由此产生的运动伪影严重限制了 4D-MRI 的进一步应用。在本文中,我们提出了一种新的基于高阶全变分和局部低秩正则化的运动对齐重建方法(maHDTV-LLR),从高度欠采样的傅里叶系数中恢复 4D MR 图像。具体来说,我们提出了一种两阶段重建框架,在运动对齐步骤和正则化优化重建步骤之间交替进行。此外,我们将 3D-HDTV 和局部低秩惩罚项纳入统一框架中,以同时利用 4D-MRI 数据的空间和时间相关性。我们利用基于变量分裂的快速交替最小化算法来有效地解决优化问题。所提出的方法在具有高欠采样因子的 4D 心脏和腹部 MR 图像重建的背景下进行了性能验证。数值结果表明,该方法能够以提高的图像质量和减少的伪影实现加速 4D-MRI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验