Center for Geographic Information Science, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan.
Taipei Municipal Jianguo High School, Taipei, Taiwan.
J Med Internet Res. 2022 Aug 9;24(8):e38776. doi: 10.2196/38776.
The COVID-19 pandemic caused a critical public health crisis worldwide, and policymakers are using lockdowns to control the virus. However, there has been a noticeable increase in aggressive social behaviors that threaten social stability. Lockdown measures might negatively affect mental health and lead to an increase in aggressive emotions. Discovering the relationship between lockdown and increased aggression is crucial for formulating appropriate policies that address these adverse societal effects. We applied natural language processing (NLP) technology to internet data, so as to investigate the social and emotional impacts of lockdowns.
This research aimed to understand the relationship between lockdown and increased aggression using NLP technology to analyze the following 3 kinds of aggressive emotions: anger, offensive language, and hate speech, in spatiotemporal ranges of tweets in the United States.
We conducted a longitudinal internet study of 11,455 Twitter users by analyzing aggressive emotions in 1,281,362 tweets they posted from 2019 to 2020. We selected 3 common aggressive emotions (anger, offensive language, and hate speech) on the internet as the subject of analysis. To detect the emotions in the tweets, we trained a Bidirectional Encoder Representations from Transformers (BERT) model to analyze the percentage of aggressive tweets in every state and every week. Then, we used the difference-in-differences estimation to measure the impact of lockdown status on increasing aggressive tweets. Since most other independent factors that might affect the results, such as seasonal and regional factors, have been ruled out by time and state fixed effects, a significant result in this difference-in-differences analysis can not only indicate a concrete positive correlation but also point to a causal relationship.
In the first 6 months of lockdown in 2020, aggression levels in all users increased compared to the same period in 2019. Notably, users under lockdown demonstrated greater levels of aggression than those not under lockdown. Our difference-in-differences estimation discovered a statistically significant positive correlation between lockdown and increased aggression (anger: P=.002, offensive language: P<.001, hate speech: P=.005). It can be inferred from such results that there exist causal relations.
Understanding the relationship between lockdown and aggression can help policymakers address the personal and societal impacts of lockdown. Applying NLP technology and using big data on social media can provide crucial and timely information for this effort.
COVID-19 大流行在全球范围内引发了严重的公共卫生危机,政策制定者正在利用封锁措施来控制病毒。然而,具有攻击性的社会行为显著增加,威胁着社会稳定。封锁措施可能会对心理健康产生负面影响,并导致攻击性情绪的增加。发现封锁与攻击性增加之间的关系对于制定解决这些不利社会影响的适当政策至关重要。我们应用自然语言处理(NLP)技术来分析互联网数据,以研究封锁对社会和情绪的影响。
本研究旨在使用 NLP 技术分析美国推特(Twitter)数据,以了解封锁与攻击性增加之间的关系,分析愤怒、攻击性语言和仇恨言论 3 种攻击性情绪在时间和空间上的变化。
我们对 11455 名 Twitter 用户进行了纵向互联网研究,分析了他们在 2019 年至 2020 年期间发布的 1281362 条推文的攻击性情绪。我们选择了互联网上 3 种常见的攻击性情绪(愤怒、攻击性语言和仇恨言论)作为分析对象。为了检测推文中的情绪,我们训练了一个基于双向编码器表示的转换器(BERT)模型,以分析每个州和每周的攻击性推文的百分比。然后,我们使用差分法来衡量封锁状态对增加攻击性推文的影响。由于时间和州固定效应排除了大多数可能影响结果的其他独立因素,例如季节性和区域性因素,因此差分法分析中的显著结果不仅可以表明具体的正相关关系,还可以表明因果关系。
在 2020 年封锁的前 6 个月中,与 2019 年同期相比,所有用户的攻击性水平都有所提高。值得注意的是,处于封锁状态的用户比未处于封锁状态的用户表现出更高的攻击性。我们的差分法估计发现,封锁与攻击性增加之间存在统计学上的正相关关系(愤怒:P=.002,攻击性语言:P<.001,仇恨言论:P=.005)。由此可以推断,存在因果关系。
了解封锁与攻击性之间的关系可以帮助政策制定者应对封锁对个人和社会的影响。应用 NLP 技术并使用社交媒体上的大数据可以为这一努力提供关键和及时的信息。