Suppr超能文献

PDE-READ:基于深度学习的人类可读偏微分方程发现。

PDE-READ: Human-readable partial differential equation discovery using deep learning.

机构信息

Center for Applied Mathematics, Cornell University, Ithaca, NY 14850, United States.

Center for Applied Mathematics, Cornell University, Ithaca, NY 14850, United States; School of Civil & Environmental Engineering, Cornell University, Ithaca, NY 14850, United States.

出版信息

Neural Netw. 2022 Oct;154:360-382. doi: 10.1016/j.neunet.2022.07.008. Epub 2022 Jul 16.

Abstract

PDE discovery shows promise for uncovering predictive models of complex physical systems but has difficulty when measurements are noisy and limited. We introduce a new approach for PDE discovery that uses two Rational Neural Networks and a principled sparse regression algorithm to identify the hidden dynamics that govern a system's response. The first network learns the system response function, while the second learns a hidden PDE describing the system's evolution. We then use a parameter-free sparse regression algorithm to extract a human-readable form of the hidden PDE from the second network. We implement our approach in an open-source library called PDE-READ. Our approach successfully identifies the governing PDE in six benchmark examples. We demonstrate that our approach is robust to both sparsity and noise and it, therefore, holds promise for application to real-world observational data.

摘要

PDE 发现为揭示复杂物理系统的预测模型提供了希望,但在测量噪声大且有限时,它会遇到困难。我们引入了一种新的 PDE 发现方法,该方法使用两个理性神经网络和一个有原则的稀疏回归算法来识别控制系统响应的隐藏动态。第一个网络学习系统响应函数,而第二个网络学习描述系统演化的隐藏偏微分方程。然后,我们使用无参数稀疏回归算法从第二个网络中提取隐藏偏微分方程的可读形式。我们在一个名为 PDE-READ 的开源库中实现了我们的方法。我们的方法成功地在六个基准示例中识别出了控制偏微分方程。我们证明了我们的方法对稀疏性和噪声具有鲁棒性,因此有望应用于实际观测数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验