Wu W, Daneker M, Jolley M A, Turner K T, Lu L
Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, U. S. A.
Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, U. S. A.
Appl Math Mech. 2023 Jul;44(7):1039-1068. doi: 10.1007/s10483-023-2995-8. Epub 2023 Jul 3.
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions. However, material identification is a challenging task, especially when the characteristic of the material is highly nonlinear in nature, as is common in biological tissue. In this work, we identify unknown material properties in continuum solid mechanics via physics-informed neural networks (PINNs). To improve the accuracy and efficiency of PINNs, we develop efficient strategies to nonuniformly sample observational data. We also investigate different approaches to enforce Dirichlet-type boundary conditions (BCs) as soft or hard constraints. Finally, we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space. The estimated material parameters achieve relative errors of less than 1%. As such, this work is relevant to diverse applications, including optimizing structural integrity and developing novel materials.
材料识别对于理解力学性能与相关力学功能之间的关系至关重要。然而,材料识别是一项具有挑战性的任务,尤其是当材料特性本质上高度非线性时,生物组织中就是常见这种情况。在这项工作中,我们通过物理信息神经网络(PINNs)识别连续介质固体力学中的未知材料属性。为提高PINNs的准确性和效率,我们开发了对观测数据进行非均匀采样的有效策略。我们还研究了将狄利克雷型边界条件(BCs)作为软约束或硬约束实施的不同方法。最后,我们将所提出的方法应用于一系列涵盖线性弹性和超弹性材料空间的与时间相关和与时间无关的固体力学示例。估计的材料参数相对误差小于1%。因此,这项工作与多种应用相关,包括优化结构完整性和开发新型材料。