Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.
Center for Research and Scientific Computation, North Carolina State University, Raleigh, North Carolina, USA.
PLoS Comput Biol. 2020 Dec 1;16(12):e1008462. doi: 10.1371/journal.pcbi.1008462. eCollection 2020 Dec.
Biologically-informed neural networks (BINNs), an extension of physics-informed neural networks [1], are introduced and used to discover the underlying dynamics of biological systems from sparse experimental data. In the present work, BINNs are trained in a supervised learning framework to approximate in vitro cell biology assay experiments while respecting a generalized form of the governing reaction-diffusion partial differential equation (PDE). By allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear forms of these terms can be learned while simultaneously converging to the solution of the governing PDE. Further, the trained MLPs are used to guide the selection of biologically interpretable mechanistic forms of the PDE terms which provides new insights into the biological and physical mechanisms that govern the dynamics of the observed system. The method is evaluated on sparse real-world data from wound healing assays with varying initial cell densities [2].
生物启发神经网络(BINN)是物理启发神经网络的一种扩展[1],它被引入并用于从稀疏的实验数据中发现生物系统的潜在动力学。在目前的工作中,BINN 被训练在监督学习框架中,以近似体外细胞生物学测定实验,同时尊重广义的控制反应扩散偏微分方程(PDE)。通过允许扩散和反应项为多层感知机(MLP),可以学习这些项的非线性形式,同时收敛到控制 PDE 的解。此外,经过训练的 MLP 用于指导 PDE 项的具有生物学解释力的机制形式的选择,这为控制所观察系统动态的生物学和物理机制提供了新的见解。该方法在具有不同初始细胞密度的伤口愈合测定的稀疏真实世界数据[2]上进行了评估。