Suppr超能文献

稳定性选择能够从有限的噪声数据中稳健地学习微分方程。

Stability selection enables robust learning of differential equations from limited noisy data.

作者信息

Maddu Suryanarayana, Cheeseman Bevan L, Sbalzarini Ivo F, Müller Christian L

机构信息

Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany.

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

出版信息

Proc Math Phys Eng Sci. 2022 Jun;478(2262):20210916. doi: 10.1098/rspa.2021.0916. Epub 2022 Jun 15.

Abstract

We present a statistical learning framework for robust identification of differential equations from noisy spatio-temporal data. We address two issues that have so far limited the application of such methods, namely their robustness against noise and the need for manual parameter tuning, by proposing stability-based model selection to determine the level of regularization required for reproducible inference. This avoids manual parameter tuning and improves robustness against noise in the data. Our stability selection approach, termed PDE-STRIDE, can be combined with any sparsity-promoting regression method and provides an interpretable criterion for model component importance. We show that the particular combination of stability selection with the iterative hard-thresholding algorithm from compressed sensing provides a fast and robust framework for equation inference that outperforms previous approaches with respect to accuracy, amount of data required, and robustness. We illustrate the performance of PDE-STRIDE on a range of simulated benchmark problems, and we demonstrate the applicability of PDE-STRIDE on real-world data by considering purely data-driven inference of the protein interaction network for embryonic polarization in . Using fluorescence microscopy images of zygotes as input data, PDE-STRIDE is able to learn the molecular interactions of the proteins.

摘要

我们提出了一种统计学习框架,用于从有噪声的时空数据中稳健地识别微分方程。我们解决了迄今为止限制此类方法应用的两个问题,即它们对噪声的鲁棒性以及手动参数调整的必要性,通过提出基于稳定性的模型选择来确定可重复推断所需的正则化水平。这避免了手动参数调整,并提高了对数据中噪声的鲁棒性。我们的稳定性选择方法,称为PDE-STRIDE,可以与任何促进稀疏性的回归方法相结合,并为模型组件重要性提供一个可解释的标准。我们表明,稳定性选择与压缩感知中的迭代硬阈值算法的特定组合为方程推断提供了一个快速且稳健的框架,在准确性、所需数据量和鲁棒性方面优于以前的方法。我们在一系列模拟基准问题上展示了PDE-STRIDE的性能,并通过考虑对[具体研究对象]中胚胎极化的蛋白质相互作用网络进行纯数据驱动的推断,证明了PDE-STRIDE在实际数据上的适用性。使用受精卵的荧光显微镜图像作为输入数据,PDE-STRIDE能够学习蛋白质的分子相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d2/9199075/cd82db51d263/rspa20210916f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验