Suppr超能文献

使用 bulk RNA-seq 和基于人工转录组训练的机器学习算法精确重建 TME。

Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes.

机构信息

BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA.

The Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Cancer Cell. 2022 Aug 8;40(8):879-894.e16. doi: 10.1016/j.ccell.2022.07.006.

Abstract

Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8 T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.

摘要

细胞去卷积算法通过分析复杂组织的基因表达,实际上可以重建组织成分。我们提出了决策树机器学习算法 Kassandra,它在广泛收集的 >9400 种组织和血液分选细胞 RNA 图谱上进行了训练,这些图谱被纳入数百万个人工转录组中,以准确重建肿瘤微环境 (TME)。通过对技术和生物学变异性、异常癌细胞表达包含以及转录表达的准确定量和归一化进行生物信息学校正,提高了 Kassandra 的稳定性和鲁棒性。通过与细胞计量、免疫组织化学或单细胞 RNA-seq 测量的比较,在 4000 张 H&E 幻灯片和 1000 个组织上验证了性能。Kassandra 准确地推断了 TME 元素,展示了这些群体在肿瘤发病机制和其他生物学过程中的作用。数字 TME 重建表明,存在 PD-1 阳性 CD8 T 细胞与免疫治疗反应强烈相关,并提高了现有生物标志物的预测潜力,这表明 Kassandra 可能在未来的临床应用中得到利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验