Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
STAR Protoc. 2024 Mar 15;5(1):102684. doi: 10.1016/j.xpro.2023.102684. Epub 2024 Jan 14.
Immunotherapy is a promising strategy to treat cancer. Here, we present a protocol for analyzing the transcriptome-based phenotypic alterations and immune cell infiltration in the tumor microenvironment. We describe steps for integrating single-cell RNA sequencing (scRNA-seq) data, comparing phenotypes and origins of mononuclear phagocytes, inferring the differentiation trajectory and infiltration process, and identifying infiltration-associated genes using machine learning. We then detail procedures for exploring the impact of these genes in prognosis through the integrated microarray and bulk RNA-seq data to obtain potential drug targets. For complete details on the use and execution of this protocol, please refer to Liao et al..
免疫疗法是治疗癌症的一种有前途的策略。在这里,我们提出了一种分析基于转录组的表型改变和肿瘤微环境中免疫细胞浸润的方案。我们描述了整合单细胞 RNA 测序 (scRNA-seq) 数据、比较单核吞噬细胞的表型和起源、推断分化轨迹和浸润过程以及使用机器学习识别浸润相关基因的步骤。然后,我们详细介绍了通过整合微阵列和批量 RNA-seq 数据来探索这些基因对预后影响的程序,以获得潜在的药物靶点。有关此方案的使用和执行的完整详细信息,请参阅 Liao 等人的研究。