Suppr超能文献

基于Jaya-覆盖算法群体算法的生成对抗网络用于胸部计算机断层扫描图像的COVID-19预测

Jaya-tunicate swarm algorithm based generative adversarial network for COVID-19 prediction with chest computed tomography images.

作者信息

Doraiswami Palanivel Rajan, Sarveshwaran Velliangiri, Swamidason Iwin Thanakumar Joseph, Sorna Sona Chandra Devadass

机构信息

Department of Computer Science and Engineering CMR Engineering College Hyderabad Telangana India.

Department of Computational Intelligence SRM Institute of Science and Technology, Kattankulathur Campus Chennai India.

出版信息

Concurr Comput. 2022 Oct 25;34(23):e7211. doi: 10.1002/cpe.7211. Epub 2022 Jul 30.

Abstract

A novel corona virus (COVID-19) has materialized as the respiratory syndrome in recent decades. Chest computed tomography scanning is the significant technology for monitoring and predicting COVID-19. To predict the patients of COVID-19 at early stage poses an open challenge in the research community. Therefore, an effective prediction mechanism named Jaya-tunicate swarm algorithm driven generative adversarial network (Jaya-TSA with GAN) is proposed in this research to find patients of COVID-19 infections. The developed Jaya-TSA is the incorporation of Jaya algorithm with tunicate swarm algorithm (TSA). However, lungs lobs are segmented using Bayesian fuzzy clustering, which effectively find the boundary regions of lung lobes. Based on the extracted features, the process of COVID-19 prediction is accomplished using GAN. The optimal solution is obtained by training GAN using proposed Jaya-TSA with respect to fitness measure. The dimensionality of features is reduced by extracting the optimal features, which enable to increase the speed of training process. Moreover, the developed Jaya-TSA based GAN attained outstanding effectiveness by considering the factors, like, specificity, accuracy, and sensitivity that captured the importance as 0.8857, 0.8727, and 0.85 by varying training data.

摘要

一种新型冠状病毒(COVID-19)在近几十年已成为呼吸系统综合征。胸部计算机断层扫描是监测和预测COVID-19的重要技术。在早期阶段预测COVID-19患者是研究界面临的一个公开挑战。因此,本研究提出了一种名为Jaya-海鞘群算法驱动生成对抗网络(带GAN的Jaya-TSA)的有效预测机制,以找出COVID-19感染患者。所开发的Jaya-TSA是Jaya算法与海鞘群算法(TSA)的结合。然而,肺叶是使用贝叶斯模糊聚类进行分割的,它能有效地找到肺叶的边界区域。基于提取的特征,使用GAN完成COVID-19的预测过程。通过使用所提出的Jaya-TSA对GAN进行训练以适应适应度度量来获得最优解。通过提取最优特征降低了特征维度,这有助于提高训练过程的速度。此外,所开发的基于Jaya-TSA的GAN通过考虑特异性、准确性和敏感性等因素取得了显著效果,通过改变训练数据,这些因素的重要性分别为0.8857、0.8727和0.85。

相似文献

2
Generative adversarial network for automatic quantification of Coronavirus disease 2019 pneumonia on chest radiographs.
Eur J Radiol. 2023 Jul;164:110858. doi: 10.1016/j.ejrad.2023.110858. Epub 2023 May 12.
3
CNN Features and Optimized Generative Adversarial Network for COVID-19 Detection from Chest X-Ray Images.
Crit Rev Biomed Eng. 2022;50(3):1-17. doi: 10.1615/CritRevBiomedEng.2022042286.
4
Prediction of the COVID disease using lung CT images by Deep Learning algorithm: DETS-optimized Resnet 101 classifier.
Front Med (Lausanne). 2023 Sep 7;10:1157000. doi: 10.3389/fmed.2023.1157000. eCollection 2023.
5
Lung nodule segmentation using Salp Shuffled Shepherd Optimization Algorithm-based Generative Adversarial Network.
Comput Biol Med. 2021 Oct;137:104811. doi: 10.1016/j.compbiomed.2021.104811. Epub 2021 Aug 28.
6
Construction of Sports Training Performance Prediction Model Based on a Generative Adversarial Deep Neural Network Algorithm.
Comput Intell Neurosci. 2022 May 21;2022:1211238. doi: 10.1155/2022/1211238. eCollection 2022.
7
An Intensive and Comprehensive Overview of JAYA Algorithm, its Versions and Applications.
Arch Comput Methods Eng. 2022;29(2):763-792. doi: 10.1007/s11831-021-09585-8. Epub 2021 May 27.
9
Improving effectiveness of different deep learning-based models for detecting COVID-19 from computed tomography (CT) images.
Neural Comput Appl. 2021;33(24):17589-17609. doi: 10.1007/s00521-021-06344-5. Epub 2021 Jul 29.

引用本文的文献

1
MSHHOTSA: A variant of tunicate swarm algorithm combining multi-strategy mechanism and hybrid Harris optimization.
PLoS One. 2023 Aug 11;18(8):e0290117. doi: 10.1371/journal.pone.0290117. eCollection 2023.

本文引用的文献

1
Multi-COVID-Net: Multi-objective optimized network for COVID-19 diagnosis from chest X-ray images.
Appl Soft Comput. 2022 Jan;115:108250. doi: 10.1016/j.asoc.2021.108250. Epub 2021 Dec 9.
2
WOANet: Whale optimized deep neural network for the classification of COVID-19 from radiography images.
Biocybern Biomed Eng. 2021 Oct-Dec;41(4):1702-1718. doi: 10.1016/j.bbe.2021.10.004. Epub 2021 Oct 23.
3
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780. doi: 10.1109/TCBB.2021.3065361. Epub 2021 Dec 8.
4
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
5
Automatic Screening of COVID-19 Using an Optimized Generative Adversarial Network.
Cognit Comput. 2021 Jan 25:1-16. doi: 10.1007/s12559-020-09785-7.
6
E-DiCoNet: Extreme learning machine based classifier for diagnosis of COVID-19 using deep convolutional network.
J Ambient Intell Humaniz Comput. 2021;12(9):8887-8898. doi: 10.1007/s12652-020-02688-3. Epub 2021 Jan 2.
8
Deep Transfer Learning Based Classification Model for COVID-19 Disease.
Ing Rech Biomed. 2022 Apr;43(2):87-92. doi: 10.1016/j.irbm.2020.05.003. Epub 2020 May 20.
9
Prior-Attention Residual Learning for More Discriminative COVID-19 Screening in CT Images.
IEEE Trans Med Imaging. 2020 Aug;39(8):2572-2583. doi: 10.1109/TMI.2020.2994908.
10
Retrospective Motion Correction in Multishot MRI using Generative Adversarial Network.
Sci Rep. 2020 Mar 16;10(1):4786. doi: 10.1038/s41598-020-61705-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验