Suppr超能文献

利用信号分解和机器学习方法检测阿尔茨海默病。

Detection of Alzheimer's Dementia by Using Signal Decomposition and Machine Learning Methods.

机构信息

Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli, 35620 Izmir, Turkey.

Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova, 35330 Izmir, Turkey.

出版信息

Int J Neural Syst. 2022 Sep;32(9):2250042. doi: 10.1142/S0129065722500423. Epub 2022 Aug 9.

Abstract

Dementia is one of the most common neurological disorders causing defection of cognitive functions, and seriously affects the quality of life. In this study, various methods have been proposed for the detection and follow-up of Alzheimer's dementia (AD) with advanced signal processing methods by using electroencephalography (EEG) signals. Signal decomposition-based approaches such as empirical mode decomposition (EMD), ensemble EMD (EEMD), and discrete wavelet transform (DWT) are presented to classify EEG segments of control subjects (CSs) and AD patients. Intrinsic mode functions (IMFs) are obtained from the signals using the EMD and EEMD methods, and the IMFs showing the most significant differences between the two groups are selected by applying previously suggested selection procedures. Five-time-domain and 5-spectral-domain features are calculated using selected IMFs, and five detail and approximation coefficients of DWT. Signal decomposition processes are conducted for both 1 min and 5 s EEG segment durations. For the 1 min segment duration, all the proposed approaches yield prominent classification performances. While the highest classification accuracies are obtained using EMD (91.8%) and EEMD (94.1%) approaches from the temporal/right brain cluster, the highest classification accuracy for the DWT (95.2%) approach is obtained from the temporal/left brain cluster for 1 min segment duration.

摘要

痴呆症是最常见的神经紊乱疾病之一,会导致认知功能障碍,严重影响生活质量。在这项研究中,通过使用脑电图(EEG)信号,采用先进的信号处理方法,提出了各种方法来检测和跟踪阿尔茨海默病(AD)。提出了基于信号分解的方法,如经验模态分解(EMD)、集合经验模态分解(EEMD)和离散小波变换(DWT),以对对照组(CSs)和 AD 患者的 EEG 段进行分类。使用 EMD 和 EEMD 方法从信号中获得固有模态函数(IMF),并通过应用先前提出的选择程序选择两组之间差异最显著的 IMF。使用所选 IMF 计算了 5 个时域和 5 个频域特征以及 DWT 的 5 个细节和逼近系数。对 1 分钟和 5 秒 EEG 段时长进行信号分解过程。对于 1 分钟段时长,所有提出的方法都产生了明显的分类性能。虽然 EMD(91.8%)和 EEMD(94.1%)方法从时间/右脑聚类中获得了最高的分类准确率,但 DWT(95.2%)方法的最高分类准确率是从时间/左脑聚类中获得的1 分钟段时长。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验